1
|
Burger M, Catto JW, Dalbagni G, Grossman
HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C,
Shariat S, et al: Epidemiology and risk factors of urothelial
bladder cancer. Eur Urol. 63:234–241. 2013. View Article : Google Scholar
|
2
|
Kodali RT and Eslick GD: Meta-analysis:
Does garlic intake reduce risk of gastric cancer? Nutr Cancer.
67:1–11. 2015. View Article : Google Scholar
|
3
|
Guercio V, Turati F, La Vecchia C, Galeone
C and Tavani A: Allium vegetables and upper aerodigestive tract
cancers: A meta-analysis of observational studies. Mol Nutr Food
Res. 60:212–222. 2016. View Article : Google Scholar
|
4
|
Butt MS, Sultan MT, Butt MS and Iqbal J:
Garlic: Nature's protection against physiological threats. Crit Rev
Food Sci Nutr. 49:538–551. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shin DY, Kim GY, Hwang HJ, Kim WJ and Choi
YH: Diallyl trisulfide-induced apoptosis of bladder cancer cells is
caspase-dependent and regulated by PI3K/Akt and JNK pathways.
Environ Toxicol Pharmacol. 37:74–83. 2014. View Article : Google Scholar
|
6
|
Wang YB, Qin J, Zheng XY, Bai Y, Yang K
and Xie LP: Diallyl trisulfide induces Bcl-2 and
caspase-3-dependent apoptosis via downregulation of Akt
phosphorylation in human T24 bladder cancer cells. Phytomedicine.
17:363–368. 2010. View Article : Google Scholar
|
7
|
Shin DY, Cha HJ, Kim GY, Kim WJ and Choi
YH: Inhibiting invasion into human bladder carcinoma 5637 cells
with diallyl trisulfide by inhibiting matrix metalloproteinase
activities and tightening tight junctions. Int J Mol Sci.
14:19911–19922. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu H, Zhang XP, Wang YL, Chua CW, Luk SU,
Wong YC, Ling MT, Wang XF and Xu KX: Identification of a novel
function of Id-1 in mediating the anticancer responses of SAMC, a
water-soluble garlic derivative, in human bladder cancer cells. Mol
Med Rep. 4:9–16. 2011.PubMed/NCBI
|
9
|
Rossello FJ, Tothill RW, Britt K, Marini
KD, Falzon J, Thomas DM, Peacock CD, Marchionni L, Li J, Bennett S,
et al: Next-generation sequence analysis of cancer xenograft
models. PLoS One. 8:e744322013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Quackenbush J: Microarray analysis and
tumor classification. N Engl J Med. 354:2463–2472. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bindea G, Mlecnik B, Hackl H, Charoentong
P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and
Galon J: ClueGO: A Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks.
Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bindea G, Galon J and Mlecnik B: CluePedia
Cytoscape plugin: Pathway insights using integrated experimental
and in silico data. Bioinformatics. 29:661–663. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS,
Jeong P, Kim MJ, Yun SJ, Lee KM, Moon SK, et al: Predictive value
of progression-related gene classifier in primary non-muscle
invasive bladder cancer. Mol Cancer. 9:32010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu J, Zhao S, Zhang J, Qu X, Jiang S,
Zhong Z, Zhang F, Wong Y and Chen H: Over-expression of survivin is
a factor responsible for differential responses of ovarian cancer
cells to S-allylmercaptocysteine (SAMC). Exp Mol Pathol.
100:294–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang W, Cheng J and Zhu Y: The JNK
signaling pathway is a novel molecular target for
S-propargyl-L-cysteine, a naturally-occurring garlic derivatives:
link to its anticancer activity in pancreatic cancer in vitro and
in vivo. Curr Cancer Drug Targets. 15:613–623. 2015. View Article : Google Scholar
|
16
|
Yin X, Zhang J, Li X, Liu D, Feng C, Liang
R, Zhuang K, Cai C, Xue X, Jing F, et al: DADS suppresses human
esophageal xenograft tumors through RAF/MEK/ERK and
mitochondria-dependent pathways. Int J Mol Sci. 15:12422–12441.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ng KT, Guo DY, Cheng Q, Geng W, Ling CC,
Li CX, Liu XB, Ma YY, Lo CM, Poon RT, et al: A garlic derivative,
S-allylcysteine (SAC), suppresses proliferation and metastasis of
hepatocellular carcinoma. PLoS One. 7:e316552012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Richmond A and Su Y: Mouse xenograft
models vs. GEM models for human cancer therapeutics. Dis Model
Mech. 1:78–82. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Russo G, Zegar C and Giordano A:
Advantages and limitations of microarray technology in human
cancer. Oncogene. 22:6497–6507. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Milner JA: A historical perspective on
garlic and cancer. J Nutr. 131:S1027–S1031. 2001.
|
21
|
Tsai CW, Chen HW, Yang JJ, Sheen LY and
Lii CK: Diallyl disulfide and diallyl trisulfide up-regulate the
expression of the pi class of glutathione S-transferase via an
AP-1-dependent pathway. J Agric Food Chem. 55:1019–1026. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK
and Pyo S: Caspase-independent cell death by allicin in human
epithelial carcinoma cells: Involvement of PKA. Cancer Lett.
224:123–132. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cho-Chung YS: Role of cyclic AMP receptor
proteins in growth, differentiation, and suppression of malignancy:
New approaches to therapy. Cancer Res. 50:7093–7100.
1990.PubMed/NCBI
|
24
|
Gordon T, Grove B, Loftus JC, O'Toole T,
McMillan R, Lindstrom J and Ginsberg MH: Molecular cloning and
preliminary characterization of a novel cytoplasmic antigen
recognized by myasthenia gravis sera. J Clin Invest. 90:992–999.
1992. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hayashi M, Nomoto S, Kanda M, Okamura Y,
Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S and Kodera Y:
Identification of the A kinase anchor protein 12 (AKAP12) gene as a
candidate tumor suppressor of hepatocellular carcinoma. J Surg
Oncol. 105:381–386. 2012. View Article : Google Scholar
|
26
|
Yoon DK, Jeong CH, Jun HO, Chun KH, Cha
JH, Seo JH, Lee HY, Choi YK, Ahn BJ, Lee SK, et al: AKAP12 induces
apoptotic cell death in human fibrosarcoma cells by regulating
CDKI-cyclin D1 and caspase-3 activity. Cancer Lett. 254:111–118.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ioannou MS and McPherson PS: Regulation of
cancer cell behavior by the small GTPase Rab13. J Biol Chem.
291:9929–9937. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mahadevan D, Spier C, Della Croce K,
Miller S, George B, Riley C, Warner S, Grogan TM and Miller TP:
Transcript profiling in peripheral T-cell lymphoma, not otherwise
specified, and diffuse large B-cell lymphoma identifies distinct
tumor profile signatures. Mol Cancer Ther. 4:1867–1879. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li W, Li K, Zhao L and Zou H:
Bioinformatics analysis reveals disturbance mechanism of MAPK
signaling pathway and cell cycle in glioblastoma multiforme. Gene.
547:346–350. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ioannou MS, Bell ES, Girard M, Chaineau M,
Hamlin JN, Daubaras M, Monast A, Park M, Hodgson L and McPherson
PS: DENND2B activates Rab13 at the leading edge of migrating cells
and promotes metastatic behavior. J Cell Biol. 208:629–648. 2015.
View Article : Google Scholar : PubMed/NCBI
|