Gastric cancer: Metabolic and metabolomics perspectives (Review)
- Authors:
- Shiyu Xiao
- Liya Zhou
-
Affiliations: Department of Gastroenterology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China - Published online on: May 16, 2017 https://doi.org/10.3892/ijo.2017.4000
- Pages: 5-17
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Conteduca V, Sansonno D, Lauletta G, Russi S, Ingravallo G and Dammacco F: H. pylori infection and gastric cancer: State of the art (Review). Int J Oncol. 42:5–18. 2013. | |
Amieva M and Peek RM Jr: Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology. 150:64–78. 2016. View Article : Google Scholar | |
Kim J, Yum S, Kang C and Kang SJ: Gene-gene interactions in gastrointestinal cancer susceptibility. Oncotarget. 7:67612–67625. 2016.PubMed/NCBI | |
Raei N, Behrouz B, Zahri S and Latifi-Navid S: Helicobacter pylori infection and dietary factors act synergistically to promote gastric cancer. Asian Pac J Cancer Prev. 17:917–921. 2016. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956.PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, et al: Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 325:1555–1559. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 465:9662010. View Article : Google Scholar : PubMed/NCBI | |
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 184:1200–1209. 2010. View Article : Google Scholar | |
Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, et al: Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 16:880–886. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ahn WS, Gameiro PA, Keibler MA, Zhang Z and Stephanopoulos G: 13C isotope-assisted methods for quantifying glutamine metabolism in cancer cells. Methods Enzymol. 542:369–389. 2014. View Article : Google Scholar : PubMed/NCBI | |
Beger RD: A review of applications of metabolomics in cancer. Metabolites. 3:552–574. 2013. View Article : Google Scholar : PubMed/NCBI | |
Putri SP, Yamamoto S, Tsugawa H and Fukusaki E: Current metabolomics: Technological advances. J Biosci Bioeng. 116:9–16. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duarte IF, Diaz SO and Gil AM: NMR metabolomics of human blood and urine in disease research. J Pharm Biomed Anal. 93:17–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ussher JR, Elmariah S, Gerszten RE and Dyck JR: The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol. 68:2850–2870. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guma M, Tiziani S and Firestein GS: Metabolomics in rheumatic diseases: Desperately seeking biomarkers. Nat Rev Rheumatol. 12:269–281. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herrmann K, Walch A, Balluff B, Tänzer M, Höfler H, Krause BJ, Schwaiger M, Friess H, Schmid RM and Ebert MP: Proteomic and metabolic prediction of response to therapy in gastrointestinal cancers. Nat Clin Pract Gastroenterol Hepatol. 6:170–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
Armitage EG and Southam AD: Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics. 12:1462016. View Article : Google Scholar : PubMed/NCBI | |
Jayavelu ND and Bar NS: Metabolomic studies of human gastric cancer (Review). World J Gastroenterol. 20:8092–8101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chan AW, Gill RS, Schiller D and Sawyer MB: Potential role of metabolomics in diagnosis and surveillance of gastric cancer. World J Gastroenterol. 20:12874–12882. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, et al: Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 6:e241432011. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Aa J, Xu J, Sun M, Qian S, Cheng L, Yang S and Shi R: Metabolomic phenotype of gastric cancer and precancerous stages based on gas chromatography time-of-flight mass spectrometry. J Gastroenterol Hepatol. 26:1290–1297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song H, Peng JS, Dong-Sheng Y, Yang ZL, Liu HL, Zeng YK, Shi XP and Lu BY: Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz J Med Biol Res. 45:78–85. 2012. View Article : Google Scholar | |
Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, et al: Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 26:548–558. 2012. View Article : Google Scholar | |
Aa J, Yu L, Sun M, Liu L, Li M, Cao B, Shi J, Xu J, Cheng L, Zhou J, et al: Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. Metabolomics. 8:164–173. 2012. View Article : Google Scholar | |
Choi JM, Park WS, Song KY, Lee HJ and Jung BH: Development of simultaneous analysis of tryptophan metabolites in serum and gastric juice - an investigation towards establishing a biomarker test for gastric cancer diagnosis. Biomed Chromatogr. 30:1963–1974. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu JZ and Chen JL: Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol. 17:727–734. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jung J, Jung Y, Bang EJ, Cho SI, Jang YJ, Kwak JM, Ryu DH, Park S and Hwang GS: Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann Surg Oncol. 21(Suppl 4): S736–S742. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Wang C and Li B: Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer. Appl Biochem Biotechnol. 176:2170–2184. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chan AW, Mercier P, Schiller D, Bailey R, Robbins S, Eurich DT, Sawyer MB and Broadhurst D: (1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br J Cancer. 114:59–62. 2016. View Article : Google Scholar | |
Chen Y, Zhang J, Guo L, Liu L, Wen J, Xu L, Yan M, Li Z, Zhang X, Nan P, et al: A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget. 7:87496–87510. 2016.PubMed/NCBI | |
Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, et al: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69:4918–4925. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen JL, Tang HQ, Hu JD, Fan J, Hong J and Gu JZ: Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World J Gastroenterol. 16:5874–5880. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, Sun Y and Shen X: Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 396:1385–1395. 2010. View Article : Google Scholar | |
Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY, Chen TL, Qiu YP, Chen PP, Li WJ, Xu LY, et al: A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteomics. 9:2617–2628. 2010. View Article : Google Scholar : PubMed/NCBI | |
Song H, Wang L, Liu HL, Wu XB, Wang HS, Liu ZH, Li Y, Diao DC, Chen HL and Peng JS: Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncol Rep. 26:431–438. 2011.PubMed/NCBI | |
Deng K, Lin S, Zhou L, Geng Q, Li Y, Xu M and Na R: Three aromatic amino acids in gastric juice as potential biomarkers for gastric malignancies. Anal Chim Acta. 694:100–107. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng K, Lin S, Zhou L and Li Y, Chen M, Wang Y and Li Y: High levels of aromatic amino acids in gastric juice during the early stages of gastric cancer progression. PLoS One. 7:e494342012. View Article : Google Scholar : PubMed/NCBI | |
Koukourakis MI, Pitiakoudis M, Giatromanolaki A, Tsarouha A, Polychronidis A, Sivridis E and Simopoulos C: Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer Sci. 97:1056–1060. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pedersen PL, Mathupala S, Rempel A, Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta. 1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yuan LW, Yamashita H and Seto Y: Glucose metabolism in gastric cancer: The cutting-edge. World J Gastroenterol. 22:2046–2059. 2016. View Article : Google Scholar : PubMed/NCBI | |
Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Hu L, Chen M, Cao W, Chen H and He T: Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: Evidence from 16 cohort studies. Onco Targets Ther. 9:4277–4288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Augoff K, Hryniewicz-Jankowska A and Tabola R: Lactate dehydrogenase 5: An old friend and a new hope in the war on cancer. Cancer Lett. 358:1–7. 2015. View Article : Google Scholar | |
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dhup S, Dadhich RK, Porporato PE and Sonveaux P: Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 18:1319–1330. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI | |
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar | |
Chen Z, Lu W, Garcia-Prieto C and Huang P: The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr. 39:267–274. 2007. View Article : Google Scholar : PubMed/NCBI | |
Costello LC and Franklin RB: 'Why do tumour cells glycolyse?': From glycolysis through citrate to lipogenesis. Mol Cell Biochem. 280:1–8. 2005. View Article : Google Scholar | |
Lu Y, Zhang X, Zhang H, Lan J, Huang G, Varin E, Lincet H, Poulain L and Icard P: Citrate induces apoptotic cell death: A promising way to treat gastric carcinoma? Anticancer Res. 31:797–805. 2011.PubMed/NCBI | |
Weljie AM and Jirik FR: Hypoxia-induced metabolic shifts in cancer cells: Moving beyond the Warburg effect. Int J Biochem Cell Biol. 43:981–989. 2011. View Article : Google Scholar | |
Ichinoe M, Yanagisawa N, Mikami T, Hana K, Nakada N, Endou H, Okayasu I and Murakumo Y: L-Type amino acid transporter 1 (LAT1) expression in lymph node metastasis of gastric carcinoma: Its correlation with size of metastatic lesion and Ki-67 labeling. Pathol Res Pract. 211:533–538. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhu GY, Gao HY, Zhao SP and Xue Y: Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric adenocarcinoma. J Surg Oncol. 103:243–247. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sampieri CL, León-Córdoba K and Remes-Troche JM: Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers. J Cancer Res Ther. 9:356–363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qian HR and Yang Y: Functional role of autophagy in gastric cancer. Oncotarget. 7:17641–17651. 2016.PubMed/NCBI | |
Hensley CT, Wasti AT and DeBerardinis RJ: Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW and Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI | |
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et al: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 476:346–350. 2011. View Article : Google Scholar : PubMed/NCBI | |
Godin-Ethier J, Hanafi LA, Piccirillo CA and Lapointe R: Indoleamine 2,3-dioxygenase expression in human cancers: Clinical and immunologic perspectives. Clin Cancer Res. 17:6985–6991. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wiggins T, Kumar S, Markar SR, Antonowicz S and Hanna GB: Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review. Cancer Epidemiol Biomarkers Prev. 24:32–38. 2015. View Article : Google Scholar | |
Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G and Terness P: Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: Tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int. 18:95–100. 2005. View Article : Google Scholar | |
Zhang R, Li H, Yu J, Zhao J, Wang X, Wang G, Yao Z, Wei F, Xue Q and Ren X: Immunoactivative role of indoleamine 2,3-dioxygenase in gastric cancer cells in vitro. Mol Med Rep. 4:169–173. 2011.PubMed/NCBI | |
McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC and Mellor AL: Amino acid catabolism: A pivotal regulator of innate and adaptive immunity. Immunol Rev. 249:135–157. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rose ML, Madren J, Bunzendahl H and Thurman RG: Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 20:793–798. 1999. View Article : Google Scholar : PubMed/NCBI | |
Amin K, Li J, Chao WR, Dewhirst MW and Haroon ZA: Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol Ther. 2:173–178. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bruns H, Petrulionis M, Schultze D, Al Saeedi M, Lin S, Yamanaka K, Ambrazevičius M, Strupas K and Schemmer P: Glycine inhibits angiogenic signaling in human hepatocellular carcinoma cells. Amino Acids. 46:969–976. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bruns H, Kazanavicius D, Schultze D, Saeedi MA, Yamanaka K, Strupas K and Schemmer P: Glycine inhibits angiogenesis in colorectal cancer: Role of endothelial cells. Amino Acids. 48:2549–2558. 2016. View Article : Google Scholar : PubMed/NCBI | |
Phang JM, Donald SP, Pandhare J and Liu Y: The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 35:681–690. 2008. View Article : Google Scholar : PubMed/NCBI | |
Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J and Arner P: Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 67:5531–5537. 2007. View Article : Google Scholar : PubMed/NCBI | |
Raghavamenon A, Garelnabi M, Babu S, Aldrich A, Litvinov D and Parthasarathy S: Alpha-tocopherol is ineffective in preventing the decomposition of preformed lipid peroxides and may promote the accumulation of toxic aldehydes: A potential explanation for the failure of antioxidants to affect human atherosclerosis. Antioxid Redox Signal. 11:1237–1248. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schallreuter KU and Wood JM: Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett. 36:297–305. 1987. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Pinedo C, El Mjiyad N and Ricci JE: Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 3:e2482012. View Article : Google Scholar : PubMed/NCBI | |
Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W and Verhoeven G: Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer. 98:19–22. 2002. View Article : Google Scholar : PubMed/NCBI | |
Flavin R, Peluso S, Nguyen PL and Loda M: Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6:551–562. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hao Q, Li T, Zhang X, Gao P, Qiao P, Li S and Geng Z: Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol Rep. 32:2471–2476. 2014.PubMed/NCBI | |
Kusakabe T, Nashimoto A, Honma K and Suzuki T: Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology. 40:71–79. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Sato K, Maekawa H, Sakurada M, Orita H, Shimada K, Daida H, Wada R, Abe M, Hino O, et al: Elevated levels of serum fatty acid synthase in patients with gastric carcinoma. Oncol Lett. 7:616–620. 2014.PubMed/NCBI | |
Lin HP, Cheng ZL, He RY, Song L, Tian MX, Zhou LS, Groh BS, Liu WR, Ji MB, Ding C, et al: Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res. 76:6924–6936. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takahiro T, Shinichi K and Toshimitsu S: Expression of fatty acid synthase as a prognostic indicator in soft tissue sarcomas. Clin Cancer Res. 9:2204–2212. 2003.PubMed/NCBI | |
Menendez JA, Lupu R and Colomer R: Inhibition of tumor-associated fatty acid synthase hyperactivity induces synergistic chemosensitization of HER-2/neu-overexpressing human breast cancer cells to docetaxel (taxotere). Breast Cancer Res Treat. 84:183–195. 2004. View Article : Google Scholar : PubMed/NCBI | |
Duan J, Sun L, Huang H, Wu Z, Wang L and Liao W: Overexpression of fatty acid synthase predicts a poor prognosis for human gastric cancer. Mol Med Rep. 13:3027–3035. 2016.PubMed/NCBI | |
Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, et al: Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA. 106:3354–3359. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu Y: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9:230–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hyde CA and Missailidis S: Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol. 9:701–715. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Yu H, Ma Q, Shen S and Das UN: Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids Health Dis. 9:1062010. View Article : Google Scholar : PubMed/NCBI | |
Swaminathan R, Major P, Snieder H and Spector T: Serum creatinine and fat-free mass (lean body mass). Clin Chem. 46:1695–1696. 2000.PubMed/NCBI | |
Eisner R, Stretch C, Eastman T, Xia J, Hau D, Damaraju S, Greiner R, Wishart D and Baracos V: Learning to predict cancer-associated skeletal muscle wasting from 1H-NMR profiles of urinary metabolites. Metabolomics. 7:25–34. 2011. View Article : Google Scholar | |
Correa P: Human gastric carcinogenesis: A multistep and multifactorial process - First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52:6735–6740. 1992.PubMed/NCBI | |
Brown GT and Murray GI: Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 237:273–281. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lau V, Wong AL, Ng C, Mok Y, Lakshmanan M and Yan B: Drug sensitivity testing platforms for gastric cancer diagnostics. J Clin Pathol. 69:93–96. 2016. View Article : Google Scholar | |
Lu J, Kunimoto S, Yamazaki Y, Kaminishi M and Esumi H: Kigamicin D, a novel anticancer agent based on a new anti-austerity strategy targeting cancer cells' tolerance to nutrient starvation. Cancer Sci. 95:547–552. 2004. View Article : Google Scholar | |
Zhao W, Chen R, Zhao M, Li L, Fan L and Che XM: High glucose promotes gastric cancer chemoresistance in vivo and in vitro. Mol Med Rep. 12:843–850. 2015.PubMed/NCBI | |
Wang X, Yan SK, Dai WX, Liu XR, Zhang WD and Wang JJ: A metabonomic approach to chemosensitivity prediction of cisplatin plus 5-fluorouracil in a human xenograft model of gastric cancer. Int J Cancer. 127:2841–2850. 2010. View Article : Google Scholar | |
Ilsley JN, Nakanishi M, Flynn C, Belinsky GS, De Guise S, Adib JN, Dobrowsky RT, Bonventre JV and Rosenberg DW: Cytoplasmic phospholipase A2 deletion enhances colon tumorigenesis. Cancer Res. 65:2636–2643. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ganesan K, Ivanova T, Wu Y, Rajasegaran V, Wu J, Lee MH, Yu K, Rha SY, Chung HC, Ylstra B, et al: Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel beta-catenin/TCF target gene. Cancer Res. 68:4277–4286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sasada S, Miyata Y, Tsutani Y, Tsuyama N, Masujima T, Hihara J and Okada M: Metabolomic analysis of dynamic response and drug resistance of gastric cancer cells to 5-fluorouracil. Oncol Rep. 29:925–931. 2013. | |
Kim KB, Yang JY, Kwack SJ, Kim HS, Ryu DH, Kim YJ, Bae JY, Lim DS, Choi SM, Kwon MJ, et al: Potential metabolomic biomarkers for evaluation of adriamycin efficacy using a urinary 1H-NMR spectroscopy. J Appl Toxicol. 33:1251–1259. 2013. | |
Büscher JM, Czernik D, Ewald JC, Sauer U and Zamboni N: Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem. 81:2135–2143. 2009. View Article : Google Scholar : PubMed/NCBI | |
Adamski J and Suhre K: Metabolomics platforms for genome wide association studies - linking the genome to the metabolome. Curr Opin Biotechnol. 24:39–47. 2013. View Article : Google Scholar | |
Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, et al: Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 140:210–220. 2011. View Article : Google Scholar | |
Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC and Fox JG: Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut. 63:54–63. 2014. View Article : Google Scholar : | |
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K and Brummer RJ: Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One. 4:e67592009. View Article : Google Scholar : | |
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI |