1
|
Bader AG, Kang S, Zhao L and Vogt PK:
Oncogenic PI3K deregulates transcription and translation. Nat Rev
Cancer. 5:921–929. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-kinase AkT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Bachman KE, Argani P, Samuels Y, Silliman
N, Ptak J, Szabo S, Konishi H, Karakas B, Blair Bg, Lin C, et al:
The PIK3CA gene is mutated with high frequency in human breast
cancers. Cancer Biol Ther. 3:772–775. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Campbell IG, Russell SE, Choong DY,
Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB and
Phillips WA: Mutation of the PIK3CA gene in ovarian and breast
cancer. Cancer Res. 64:7678–7681. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saal Lh, Holm K, Maurer M, Memeo L, Su T,
Wang X, YU JS, Malmström PO, Mansukhani M, Enoksson J, et al: IK3CA
mutations correlate with hormone receptors, node metastasis, and
ERBB2, and are mutually exclusive with PTEN loss in human breast
carcinoma. Cancer Res. 65:2554–2559. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wu G, Xing M, Mambo E, Huang X, Liu J, Guo
Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, et al: Somatic
mutation and gain of copy number of PIK3CA in human breast cancer.
Breast Cancer Res. 7:R609–R616. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang H, Liu G, Dziubinski M, Yang Z,
Ethier SP and Wu G: Comprehensive analysis of oncogenic effects of
PIK3CA mutations in human mammary epithelial cells. Breast Cancer
Res Treat. 112:217–227. 2008. View Article : Google Scholar
|
9
|
Isakoff SJ, Engelman JA, Irie HY, Luo J,
Brachmann SM, Pearline RV, Cantley LC and Brugge JS: Breast
cancer-associated PIK3CA mutations are oncogenic in mammary
epithelial cells. Cancer Res. 65:10992–11000. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kang S, Bader AG and Vogt PK:
Phosphatidylinositol 3-kinase mutations identified in human cancer
are oncogenic. Proc Natl Acad Sci USA. 102:802–807. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Samuels Y, Diaz LA Jr, Schmidt-kittler O,
Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C,
Kinzler KW, et al: Mutant PIK3CA promotes cell growth and invasion
of human cancer cells. Cancer Cell. 7:561–573. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao JJ, Liu Z, Wang L, Shin E, Loda MF
and Roberts TM: The oncogenic properties of mutant p110alpha and
p110beta phosphatidylinositol 3-kinases in human mammary epithelial
cells. Proc Natl Acad Sci USA. 102:18443–18448. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Engelman JA: Targeting PI3K signalling in
cancer: Opportunities, challenges and limitations. Nat Rev Cancer.
9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu P, Cheng H, Roberts TM and Zhao JJ:
Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev
Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
De Laurentiis M, Cancello G, Zinno L,
Montagna E, Malorni L, Esposito A, Pennacchio R, Silvestro L,
Giuliano M, Giordano A, et al: Targeting HER2 as a therapeutic
strategy for breast cancer: A paradigmatic shift of drug
development in oncology. Ann Oncol. 16(Suppl 4): iv7–iv13. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li SG and Li L: Targeted therapy in
HER2-positive breast cancer. Biomed Rep. 1:499–505. 2013.
View Article : Google Scholar
|
17
|
Gajria D and Chandarlapaty S:
HER2-amplified breast cancer: Mechanisms of trastuzumab resistance
and novel targeted therapies. Expert Rev Anticancer Ther.
11:263–275. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rexer BN and Arteaga CL: Optimal targeting
of HER2-PI3K signaling in breast cancer: Mechanistic insights and
clinical implications. Cancer Res. 73:3817–3820. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Castaneda CA, Lopez-Ilasaca M, Pinto JA,
Chirinos-Arias M, Doimi F, Neciosup SP, Rojas KI, Vidaurre T, Balko
JM, Arteaga CL, et al: PIK3CA mutations in Peruvian patients with
HER2-amplified and triple negative non-metastatic breast cancers.
Hematol Oncol Stem Cell Ther. 7:142–148. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chakrabarty A, Rexer BN, Wang SE, Cook RS,
Engelman JA and Arteaga CL: H1047R phosphatidylinositol 3-kinase
mutant enhances HER2-mediated transformation by heregulin
production and activation of HER3. Oncogene. 29:5193–5203. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hanker AB, Pfefferle AD, Balko JM, Kuba
MG, Young CD, Sánchez V, Sutton CR, Cheng H, Perou CM, Zhao JJ, et
al: Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors
and induces resistance to combinations of anti-HER2 therapies. Proc
Natl Acad Sci USA. 110:14372–14377. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kataoka Y, Mukohara T, Shimada H, Saijo N,
Hirai M and Minami H: Association between gain-of-function
mutations in PIK3CA and resistance to HER2-targeted agents in
HER2-amplified breast cancer cell lines. Ann Oncol. 21:255–262.
2010. View Article : Google Scholar
|
23
|
Neve RM, Chin K, Fridlyand J, Yeh J,
Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al: A
collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell. 10:515–527.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Searl TJ and Silinsky EM: LY 294002
inhibits adenosine receptor activation by a mechanism independent
of effects on PI-3 kinase or casein kinase II. Purinergic Signal.
1:389–394. 2005. View Article : Google Scholar
|
25
|
Vlahos CJ, Matter WF, Hui KY and Brown RF:
A specific inhibitor of phosphatidylinositol 3-kinase,
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol
Chem. 269:5241–5248. 1994.PubMed/NCBI
|
26
|
Feng B, Xu JJ, Bi YA, Mireles R, Davidson
R, Duignan DB, Campbell S, Kostrubsky VE, Dunn MC, Smith AR, et al:
Role of hepatic transporters in the disposition and hepatotoxicity
of a HER2 tyrosine kinase inhibitor CP-724,714. Toxicol Sci.
108:492–500. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jani JP, Finn RS, Campbell M, Coleman KG,
Connell RD, Currier N, Emerson EO, Floyd E, Harriman S, Kath JC, et
al: Discovery and pharmacologic characterization of CP-724,714, a
selective ErbB2 tyrosine kinase inhibitor. Cancer Res.
67:9887–9893. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim S, Han J, Lee SK, Koo M, Cho Dh, Bae
Sy, Choi My, Kim JS, Kim JH, Choe JH, et al: Smad7 acts as a
negative regulator of the epidermal growth factor (EGF) signaling
pathway in breast cancer cells. Cancer Lett. 314:147–154. 2012.
View Article : Google Scholar
|
30
|
Chen JX, XU LL, Wang XC, Qin HY and Wang
JL: Involvement of c-Src/STAT3 signal in EGF-induced proliferation
of rat spermatogonial stem cells. Mol cell Biochem. 358:67–73.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo Y, Fu P, Zhu H, Reed E, Remick SC,
Petros W, Mueller MD and YU JJ: correlations among ERCC1, XPB,
UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of
histological subtypes of patients with epithelial ovarian cancer.
Oncol Rep. 27:286–292. 2012.
|
32
|
Boyd DB: Insulin and cancer. Integr Cancer
Ther. 2:315–329. 2003. View Article : Google Scholar
|
33
|
Müssig K and Häring HU: Insulin signal
transduction in normal cells and its role in carcinogenesis. Exp
Clin Endocrinol Diabetes. 118:356–359. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pollak M: The insulin and insulin-like
growth factor receptor family in neoplasia: An update. Nat Rev
Cancer. 12:159–169. 2012.PubMed/NCBI
|
35
|
Rexer BN, Chanthaphaychith S, Dahlman K
and Arteaga CL: Direct inhibition of PI3K in combination with dual
HER2 inhibitors is required for optimal antitumor activity in
HER2+ breast cancer cells. Breast Cancer Res. 16:R92014.
View Article : Google Scholar
|
36
|
Lopez S, Cocco E, Black J, Bellone S,
Bonazzoli E, Predolini F, Ferrari F, Schwab CL, English DP, Ratner
E, et al: Dual HER2/IK3CA targeting overcomes single-agent acquired
resistance in HER2-amplified uterine serous carcinoma cell lines in
vitro and in vivo. Mol Cancer Ther. 14:2519–2526. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Feng S, Cao Z and Wang X: Role of aryl
hydrocarbon receptor in cancer. Biochim Biophys Acta. 1836:197–210.
2013.PubMed/NCBI
|
38
|
Murray IA, Patterson AD and Perdew GH:
Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat
Rev Cancer. 14:801–814. 2014. View Article : Google Scholar
|
39
|
Powell JB, Goode GD and Eltom SE: The aryl
hydrocarbon receptor: A target for breast cancer therapy. J Cancer
Ther. 4:1177–1186. 2013. View Article : Google Scholar
|
40
|
Kuhajda FP: AMP-activated protein kinase
and human cancer: Cancer metabolism revisited. Int J Obes. 32(Suppl
4): S36–S41. 2008. View Article : Google Scholar
|
41
|
Faubert B, Vincent EE, Poffenberger MC and
Jones RG: The AMP-activated protein kinase (AMPK) and cancer: Many
faces of a metabolic regulator. Cancer Lett. 356:165–170. 2015.
View Article : Google Scholar
|
42
|
Jeon S-M and Hay N: The double-edged sword
of AMPK signaling in cancer and its therapeutic implications. Arch
Pharm Res. 38:346–357. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Popovic D, Vucic D and Dikic I:
Ubiquitination in disease pathogenesis and treatment. Nat Med.
20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ohta T and Fukuda M: Ubiquitin and breast
cancer. Oncogene. 23:2079–2088. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang
Z and Wei W: Targeting the ubiquitin pathway for cancer treatment.
Biochim Biophys Acta. 1855:50–60. 2015.
|
46
|
Hills SA and Diffley JF: DNA replication
and oncogene-induced replicative stress. Curr Biol. 24:R435–R444.
2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mazouzi A, Velimezi G and Loizou JI: DNA
replication stress: causes, resolution and disease. Exp Cell Res.
329:85–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Gaillard H, García-Muse T and Aguilera A:
replication stress and cancer. Nat Rev Cancer. 15:276–289. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Taylor EM and Lindsay HD: DNA replication
stress and cancer: cause or cure? Future Oncol. 12:221–237. 2016.
View Article : Google Scholar
|