1
|
Cohn SL and Tweddle DA: MYCN amplification
remains prognostically strong 20 years after its 'clinical debut'.
Eur J Cancer. 40:2639–2642. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weiss WA, Aldape K, Mohapatra G,
Feuerstein BG and Bishop JM: Targeted expression of MYCN causes
neuroblastoma in transgenic mice. EMBO J. 16:2985–2995. 1997.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chesler L and Weiss WA: Genetically
engineered murine models - contribution to our understanding of the
genetics, molecular pathology and therapeutic targeting of
neuroblastoma. Semin Cancer Biol. 21:245–255. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rasmuson A, Segerström L, Nethander M,
Finnman J, Elfman LH, Javanmardi N, Nilsson S, Johnsen JI,
Martinsson T and Kogner P: Tumor development, growth
characteristics and spectrum of genetic aberrations in the TH-MYCN
mouse model of neuroblastoma. PLoS One. 7:e512972012. View Article : Google Scholar
|
5
|
Cheng AJ, Cheng NC, Ford J, Smith J,
Murray JE, Flemming C, Lastowska M, Jackson MS, Hackett CS, Weiss
WA, et al: Cell lines from MYCN transgenic murine tumours reflect
the molecular and biological characteristics of human
neuroblastoma. Eur J Cancer. 43:1467–1475. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lehembre F and Regenass U: Metastatic
disease: A drug discovery perspective. Semin Cancer Biol.
22:261–271. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stauffer JK, Orentas RJ, Lincoln E, Khan
T, Salcedo R, Hixon JA, Back TC, Wei JS, Patidar R, Song Y, et al:
High-throughput molecular and histopathologic profiling of tumor
tissue in a novel transplantable model of murine neuroblastoma: New
tools for pediatric drug discovery. Cancer Invest. 30:343–363.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kroesen M, Nierkens S, Ansems M, Wassink
M, Orentas RJ, Boon L, den Brok MH, Hoogerbrugge PM and Adema GJ: A
transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for
preclinical immunological studies in neuroblastoma. Int J Cancer.
134:1335–1345. 2014. View Article : Google Scholar
|
9
|
Brown CJ, Lain S, Verma CS, Fersht AR and
Lane DP: Awakening guardian angels: drugging the p53 pathway.
Nature reviews. 9:pp. 862–873. 2009, https://doi.org/10.1038/nrc2763.
|
10
|
Carr J, Bell E, Pearson ADJ, Kees UR,
Beris H, Lunec J and Tweddle DA: Increased frequency of aberrations
in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines
established at relapse. Cancer Res. 66:2138–2145. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Keshelava N, Zuo JJ, Chen P, Waidyaratne
SN, Luna MC, Gomer CJ, Triche TJ and Reynolds CP: Loss of p53
function confers high-level multidrug resistance in neuroblastoma
cell lines. Cancer Res. 61:6185–6193. 2001.PubMed/NCBI
|
12
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Soussi T and Béroud C: Assessing TP53
status in human tumours to evaluate clinical outcome. Nat Rev
Cancer. 1:233–240. 2001. View Article : Google Scholar
|
14
|
Carr-Wilkinson J, O'Toole K, Wood KM,
Challen CC, Baker AG, Board JR, Evans L, Cole M, Cheung NK, Boos J,
et al: High Frequency of p53/MDM2/p14ARF Pathway
Abnormalities in Relapsed Neuroblastoma. Clin Cancer Res.
16:1108–1118. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tweddle DA, Malcolm AJ, Bown N, Pearson AD
and Lunec J: Evidence for the development of p53 mutations after
cytotoxic therapy in a neuroblastoma cell line. Cancer Res.
61:8–13. 2001.PubMed/NCBI
|
16
|
Padovan-Merhar OM, Raman P, Ostrovnaya I,
Kalletla K, Rubnitz KR, Sanford EM, Ali SM, Miller VA, Mossé YP,
Granger MP, et al: Enrichment of targetable mutations in the
relapsed neuroblastoma genome. PLoS Genet. 12:e10065012016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Evageliou NF, Haber M, Vu A, Laetsch TW,
Murray J, Gamble LD, Cheng NC, Liu K, Reese M, Corrigan KA, et al:
Polyamine antagonist therapies inhibit neuroblastoma initiation and
progression. Clin Cancer Res. 22:4391–4404. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
de Murcia JM, Niedergang C, Trucco C,
Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A,
LeMeur M, et al: Requirement of poly(ADP-ribose) polymerase in
recovery from DNA damage in mice and in cells. Proc Natl Acad Sci
USA. 94:7303–7307. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen L and Tweddle DA: p53, SKP2, and DKK3
as MYCN target genes and their potential therapeutic significance.
Front Oncol. 2:1732012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen L, Zhao Y, Halliday GC, Berry P,
Rousseau RF, Middleton SA, Nichols GL, Del Bello F, Piergentili A,
Newell DR, et al: Structurally diverse MDM2-p53 antagonists act as
modulators of MDR-1 function in neuroblastoma. Br J Cancer.
111:716–725. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen L, Rousseau RF, Middleton SA, Nichols
GL, Newell DR, Lunec J and Tweddle DA: Pre-clinical evaluation of
the MDM2-p53 antagonist RG7388 alone and in combination with
chemotherapy in neuroblastoma. Oncotarget. 6:10207–10221.
2015.PubMed/NCBI
|
22
|
Valenzuela MT, Guerrero R, Núñez MI, De
Ruiz Almodóvar JM, Sarker M, de Murcia G and Oliver FJ: PARP-1
modifies the effectiveness of p53-mediated DNA damage response.
Oncogene. 21:1108–1116. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gamble LD, Kees UR, Tweddle DA and Lunec
J: MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists
Nutlin-3 and MI-63. Oncogene. 31:752–763. 2012. View Article : Google Scholar
|
24
|
Van Maerken T, Rihani A, Dreidax D, De
Clercq S, Yigit N, Marine JC, Westermann F, De Paepe A,
Vandesompele J and Speleman F: Functional analysis of the p53
pathway in neuroblastoma cells using the small-molecule MDM2
antagonist nutlin-3. Mol Cancer Ther. 10:983–993. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mazanek P, Dam V, Morgan BT, Liu X, Pawar
N and Hogarty MD: Assessment of p19/ARF-MDM-p53 and RAS pathways
for alterations in neuroblastomas arising in the transgenic TH-MYCN
mouse model. In: Advances in Neuroblastoma Research; June 16–19th
2004; Genoa, Italy. 2004
|
26
|
Chen L, Iraci N, Gherardi S, Gamble LD,
Wood KM, Perini G, Lunec J and Tweddle DA: p53 is a direct
transcriptional target of MYCN in neuroblastoma. Cancer Res.
70:1377–1388. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chesler L, Goldenberg DD, Collins R,
Grimmer M, Kim GE, Tihan T, Nguyen K, Yakovenko S, Matthay K and
Weiss WA: Chemotherapy-induced apoptosis in a transgenic model of
neuroblastoma proceeds through p53 induction. Neoplasia.
10:1268–1274. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen Z, Lin Y, Barbieri E, Burlingame S,
Hicks J, Ludwig A and Shohet JM: Mdm2 deficiency suppresses
MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia.
11:753–762. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Eischen CM, Weber JD, Roussel MF, Sherr CJ
and Cleveland JL: Disruption of the ARF-Mdm2-p53 tumor suppressor
pathway in Myc-induced lymphomagenesis. Genes Dev. 13:2658–2669.
1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yogev O, Barker K, Sikka A, Almeida GS,
Hallsworth A, Smith LM, Jamin Y, Ruddle R, Koers A, Webber HT, et
al: p53 loss in MYC-driven neuroblastoma leads to metabolic
adaptations supporting radioresistance. Cancer Res. 76:3025–3035.
2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vassilev LT, Vu BT, Graves B, Carvajal D,
Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et
al: In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen L, Malcolm AJ, Wood KM, Cole M,
Variend S, Cullinane C, Pearson AD, Lunec J and Tweddle DA: p53 is
nuclear and functional in both undifferentiated and differentiated
neuroblastoma. Cell Cycle. 6:2685–2696. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sun Y, Yi H, Yang Y, Yu Y, Ouyang Y, Yang
F, Xiao Z and Chen Z: Functional characterization of p53 in
nasopharyngeal carcinoma by stable shRNA expression. Int J Oncol.
34:1017–1027. 2009.PubMed/NCBI
|
34
|
Vassilev LT: Small-molecule antagonists of
p53-MDM2 binding: research tools and potential therapeutics. Cell
Cycle. 3:419–421. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Khoo KH, Verma CS and Lane DP: Drugging
the p53 pathway: Understanding the route to clinical efficacy. Nat
Rev Drug Discov. 13:217–236. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Delaisi C, Meaux I, Dos-Santos O, Barrière
C, Duffieux F, Hoffmann D, Rak A, Wolfrom M, Flèche, Zhou-Liu Q, et
al: In vitro characterization of spiro-oxindole-based modulators of
the MDM2-53 interaction and their interspecies selectivity. 103rd
Annual Meeting of the American Association for Cancer Research, Mar
31–Apr 4, 2012. Cancer Res. 72. Abstract nr 4648. Chicago, IL:
2012
|
37
|
Holzer P, Masuya K, Furet P, Kallen J,
Valat-Stachyra T, Ferretti S, Berghausen J, Bouisset-Leonard M,
Buschmann N, Pissot-Soldermann C, et al: Discovery of a
dihydroisoquinolinone derivative (NVP-CGM097): A highly potent and
selective MDM2 inhibitor undergoing phase 1 clinical trials in
p53wt tumors. J Med Chem. 58:6348–6358. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Stachyra-Valat T, Baysang F, D'Alessandro
A-C, Dirk E, Furet P, Guagnano V, Kallen J, Leder L, Mah R, Masuya
K, et al: Abstract 1239: NVP-HDM201: Biochemical and biophysical
profile of a novel highly potent and selective PPI inhibitor of
p53-Mdm2. Cancer Res. 76(Suppl 14): 1239. 2016. View Article : Google Scholar
|
39
|
Furet P, Masuya K, Kallen J,
Stachyra-Valat T, Ruetz S, Guagnano V, Holzer P, Mah R, Stutz S,
Vaupel A, et al: Discovery of a novel class of highly potent
inhibitors of the p53-MDM2 interaction by structure-based design
starting from a conformational argument. Bioorg Med Chem Lett.
26:4837–4841. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Heukamp LC, Thor T, Schramm A, De Preter
K, Kumps C, De Wilde B, Odersky A, Peifer M, Lindner S, Spruessel
A, et al: Targeted expression of mutated ALK induces neuroblastoma
in transgenic mice. Sci Transl Med. 4:141ra912012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Khanna C and Hunter K: Modeling metastasis
in vivo. Carcinogenesis. 26:513–523. 2005. View Article : Google Scholar
|
42
|
Khanna C, Jaboin JJ, Drakos E, Tsokos M
and Thiele CJ: Biologically relevant orthotopic neuroblastoma
xenograft models: Primary adrenal tumor growth and spontaneous
distant metastasis. In Vivo. 16:77–85. 2002.PubMed/NCBI
|
43
|
Beltinger C and Debatin KM: Murine models
for experimental therapy of pediatric solid tumors with poor
prognosis. Int J Cancer. 92:313–318. 2001. View Article : Google Scholar : PubMed/NCBI
|