The post-translational modification, SUMOylation, and cancer (Review)
- Authors:
- Zhi-Jian Han
- Yan-Hu Feng
- Bao-Hong Gu
- Yu-Min Li
- Hao Chen
-
Affiliations: Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China, Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China - Published online on: February 22, 2018 https://doi.org/10.3892/ijo.2018.4280
- Pages: 1081-1094
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B and Lavrik IN: Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol. 27:322–339. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Qian C and Cao X: Post-translational modification control of innate immunity. Immunity. 45:15–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bode AM and Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 4:793–805. 2004. View Article : Google Scholar : PubMed/NCBI | |
Venne AS, Kollipara L and Zahedi RP: The next level of complexity: Crosstalk of posttranslational modifications. Proteomics. 14:513–524. 2014. View Article : Google Scholar | |
Woolfrey KM and Dell'Acqua ML: Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem. 290:28604–28612. 2015. View Article : Google Scholar : PubMed/NCBI | |
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127:635–648. 2006. View Article : Google Scholar : PubMed/NCBI | |
Johnson LN: The regulation of protein phosphorylation. Biochem Soc Trans. 37:627–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang X and Chen ZJ: The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol. 12:35–48. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vucic D, Dixit VM and Wertz IE: Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol. 12:439–452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fulda S, Rajalingam K and Dikic I: Ubiquitylation in immune disorders and cancer: From molecular mechanisms to therapeutic implications. EMBO Mol Med. 4:545–556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choudhary C, Weinert BT, Nishida Y, Verdin E and Mann M: The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 15:536–550. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo M and Huang BX: Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics. 13:424–437. 2013. View Article : Google Scholar | |
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 44:325–340. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK and Thibault P: Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun. 8:141092017. View Article : Google Scholar : PubMed/NCBI | |
Biggar KK and Li SS: Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 16:5–17. 2015. View Article : Google Scholar | |
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 325:834–840. 2009. View Article : Google Scholar : PubMed/NCBI | |
Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI | |
Menzies KJ, Zhang H, Katsyuba E and Auwerx J: Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol. 12:43–60. 2016. View Article : Google Scholar | |
Verdin E and Ott M: 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 16:258–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bettermann K, Benesch M, Weis S and Haybaeck J: SUMOylation in carcinogenesis. Cancer Lett. 316:113–125. 2012. View Article : Google Scholar | |
Eifler K and Vertegaal AC: SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci. 40:779–793. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flotho A and Melchior F: Sumoylation: A regulatory protein modification in health and disease. Annu Rev Biochem. 82:357–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rabellino A, Andreani C and Scaglioni PP: The role of PIAS SUMO E3-ligases in cancer. Cancer Res. 77:1542–1547. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seeler JS and Dejean A: SUMO and the robustness of cancer. Nat Rev Cancer. 17:184–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Dasso M: SUMOylation and deSUMOylation at a glance. J Cell Sci. 122:4249–4252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mahajan R, Delphin C, Guan T, Gerace L and Melchior F: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88:97–107. 1997. View Article : Google Scholar : PubMed/NCBI | |
Matunis MJ, Coutavas E and Blobel G: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 135:1457–1470. 1996. View Article : Google Scholar : PubMed/NCBI | |
Saitoh H and Hinchey J: Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 275:6252–6258. 2000. View Article : Google Scholar : PubMed/NCBI | |
Owerbach D, McKay EM, Yeh ET, Gabbay KH and Bohren KM: A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun. 337:517–520. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Yang P, Li M and Gong F: Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity. Biochem Biophys Res Commun. 381:477–481. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Jin JB and Hasegawa PM: Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol. 10:495–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH and Hay RT: Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 276:35368–35374. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nayak A and Müller S: SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 15:4222014. View Article : Google Scholar : PubMed/NCBI | |
Desterro JM, Rodriguez MS, Kemp GD and Hay RT: Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem. 274:10618–10624. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tatham MH, Kim S, Jaffray E, Song J, Chen Y and Hay RT: Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol. 12:67–74. 2005. View Article : Google Scholar | |
Bernier-Villamor V, Sampson DA, Matunis MJ and Lima CD: Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 108:345–356. 2002. View Article : Google Scholar : PubMed/NCBI | |
Werner A, Flotho A and Melchior F: The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell. 46:287–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cappadocia L, Pichler A and Lima CD: Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol. 22:968–975. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T and Palvimo JJ: PIAS proteins: Pleiotropic interactors associated with SUMO. Cell Mol Life Sci. 66:3029–3041. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stephan AK, Kliszczak M and Morrison CG: The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett. 585:2907–2913. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reverter D and Lima CD: Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 435:687–692. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang SH and Sharrocks AD: The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol Cell Biol. 30:2193–2205. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kagey MH, Melhuish TA and Wotton D: The polycomb protein Pc2 is a SUMO E3. Cell. 113:127–137. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hatakeyama S: TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 42:297–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koliopoulos MG, Esposito D, Christodoulou E, Taylor IA and Rittinger K: Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J. 35:1204–1218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hickey CM, Wilson NR and Hochstrasser M: Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 13:755–766. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mendes AV, Grou CP, Azevedo JE and Pinto MP: Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochim Biophys Acta. 1863:139–147. 2016. View Article : Google Scholar | |
Shin EJ, Shin HM, Nam E, Kim WS, Kim JH, Oh BH and Yun Y: DeSUMOylating isopeptidase: A second class of SUMO protease. EMBO Rep. 13:339–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yeh ET: SUMOylation and De-SUMOylation: Wrestling with life's processes. J Biol Chem. 284:8223–8227. 2009. View Article : Google Scholar : | |
Kim JH and Baek SH: Emerging roles of desumoylating enzymes. Biochim Biophys Acta. 1792:155–162. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang CJ, Wu D, Khan FA and Huo LJ: DeSUMOylation: An important therapeutic target and protein regulatory event. DNA Cell Biol. 34:652–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar | |
Bergink S and Jentsch S: Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 458:461–467. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thomson TM and Guerra-Rebollo M: Ubiquitin and SUMO signalling in DNA repair. Biochem Soc Trans. 38:116–131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ulrich HD: Ubiquitin and SUMO in DNA repair at a glance. J Cell Sci. 125:249–254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jackson SP and Durocher D: Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell. 49:795–807. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sarangi P and Zhao X: SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci. 40:233–242. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seeler JS and Dejean A: Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol. 4:690–699. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stielow B, Sapetschnig A, Krüger I, Kunert N, Brehm A, Boutros M and Suske G: Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol Cell. 29:742–754. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A and Pandolfi PP: Role of SUMO-1-modified PML in nuclear body formation. Blood. 95:2748–2752. 2000.PubMed/NCBI | |
Schimmel J, Eifler K, Sigurðsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV, et al: Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell. 53:1053–1066. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Körner R, Olsen JV, Jentsch S, Melchior F and Sixma TK: SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol. 12:264–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ and Ellis NA: SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol. 7:e10002522009. View Article : Google Scholar : PubMed/NCBI | |
Keusekotten K, Bade VN, Meyer-Teschendorf K, Sriramachandran AM, Fischer-Schrader K, Krause A, Horst C, Schwarz G, Hofmann K, Dohmen RJ, et al: Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem J. 457:207–214. 2014. View Article : Google Scholar : | |
Song J, Durrin LK, Wilkinson TA, Krontiris TG and Chen Y: Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA. 101:14373–14378. 2004. View Article : Google Scholar : PubMed/NCBI | |
Merrill JC, Melhuish TA, Kagey MH, Yang SH, Sharrocks AD and Wotton D: A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. PLoS One. 5:e87942010. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez JA: Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Semin Cancer Biol. 27:11–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müller S, Ledl A and Schmidt D: SUMO: A regulator of gene expression and genome integrity. Oncogene. 23:1998–2008. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nie M and Boddy MN: Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules. 6:142016. View Article : Google Scholar : PubMed/NCBI | |
Melchior F, Schergaut M and Pichler A: SUMO: Ligases, isopeptidases and nuclear pores. Trends Biochem Sci. 28:612–618. 2003. View Article : Google Scholar : PubMed/NCBI | |
Eifler K and Vertegaal AC: Mapping the SUMOylated landscape. FEBS J. 282:3669–3680. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi SG, Kim H, Jeong EI, Lee HJ, Park S, Lee SY, Lee HJ, Lee SW, Chung CH and Jung YK: SUMO-Modified FADD recruits cytosolic Drp1 and caspase-10 to mitochondria for regulated necrosis. Mol Cell Biol. 37:372017. View Article : Google Scholar | |
Hendriks IA and Vertegaal AC: A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 17:581–595. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peuscher MH and Jacobs JJ: Posttranslational control of telomere maintenance and the telomere damage response. Cell Cycle. 11:1524–1534. 2012. View Article : Google Scholar : PubMed/NCBI | |
von Wangenheim KH and Peterson HP: The role of cell differentiation in controlling cell multiplication and cancer. J Cancer Res Clin Oncol. 134:725–741. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vlachostergios PJ and Papandreou CN: The role of the small ubiquitin-related modifier (SUMO) pathway in prostate cancer. Biomolecules. 2:240–255. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Cai C, Omwancha J, Chen SY, Baslan T and Shemshedini L: SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem. 281:4002–4012. 2006. View Article : Google Scholar | |
Bawa-Khalfe T, Cheng J, Wang Z and Yeh ET: Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem. 282:37341–37349. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Yang F, Lu L and Dai W: Arsenic-induced sumoylation of Mus81 is involved in regulating genomic stability. Cell Cycle. 16:802–811. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bawa-Khalfe T, Yang FM, Ritho J, Lin HK, Cheng J and Yeh ET: SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget. 8:17651–17664. 2017. View Article : Google Scholar : | |
Bawa-Khalfe T, Cheng J, Lin SH, Ittmann MM and Yeh ET: SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J Biol Chem. 285:25859–25866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang M, Qu X, Xu Z, Yang Y, Su Q and Wu H: SUMOylation of PES1 upregulates its stability and function via inhibiting its ubiquitination. Oncotarget. 7:50522–50534. 2016.PubMed/NCBI | |
Finkbeiner E, Haindl M, Raman N and Muller S: SUMO routes ribosome maturation. Nucleus. 2:527–532. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M, Muñoz J, Mendez J and Fernandez-Capetillo O: USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol. 23:270–277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smits VA and Freire R: USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication. BioEssays. 38:863–868. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q and Xu Y: PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci. 126:3939–3947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yang C, Hong Y, Bi H, Zhao F, Liu Y, Ao X, Pang P, Xing X, Chang AK, et al: The transcriptional activity of co-activator AIB1 is regulated by the SUMO E3 ligase PIAS1. Biol Cell. 104:287–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773:1263–1284. 2007. View Article : Google Scholar | |
Kubota Y, O'Grady P, Saito H and Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol. 13:282–291. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taylor EM, Copsey AC, Hudson JJ, Vidot S and Lehmann AR: Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol Cell Biol. 28:1197–1206. 2008. View Article : Google Scholar : | |
Wu J, Liu T, Rios Z, Mei Q, Lin X and Cao S: Heat shock proteins and cancer. Trends Pharmacol Sci. 38:226–256. 2017. View Article : Google Scholar | |
Rachidi S, Sun S, Wu BX, Jones E, Drake RR, Ogretmen B, Cowart LA, Clarke CJ, Hannun YA, Chiosis G, et al: Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol. 62:879–888. 2015. View Article : Google Scholar : | |
Pinto MP, Carvalho AF, Grou CP, Rodríguez-Borges JE, Sá-Miranda C and Azevedo JE: Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochim Biophys Acta. 1823:1958–1966. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niskanen EA, Malinen M, Sutinen P, Toropainen S, Paakinaho V, Vihervaara A, Joutsen J, Kaikkonen MU, Sistonen L and Palvimo JJ: Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 16:1532015. View Article : Google Scholar : PubMed/NCBI | |
Ishihara K, Fatma N, Bhargavan B, Chhunchha B, Kubo E, Dey S, Takamura Y, Kumar A and Singh DP: Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response. FEBS J. 279:3048–3070. 2012. View Article : Google Scholar : PubMed/NCBI | |
Castorálová M, Březinová D, Svéda M, Lipov J, Ruml T and Knejzlík Z: SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis. Biochim Biophys Acta. 1823:911–919. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, Fourmaux E, Bouchot A, Landry J, Piechaczyk M and Garrido C: Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene. 28:3332–3344. 2009. View Article : Google Scholar : PubMed/NCBI | |
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M and Hay RT: System-wide changes to SUMO modifications in response to heat shock. Sci Signal. 2:ra242009. View Article : Google Scholar : PubMed/NCBI | |
Liu HW, Zhang J, Heine GF, Arora M, Gulcin Ozer H, Onti-Srinivasan R, Huang K and Parvin JD: Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic Acids Res. 40:10172–10186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aguilar-Martinez E, Chen X, Webber A, Mould AP, Seifert A, Hay RT and Sharrocks AD: Screen for multi-SUMO-binding proteins reveals a multi-SIM-binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proc Natl Acad Sci USA. 112:E4854–E4863. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amente S, Lavadera ML, Palo GD and Majello B: SUMO-activating SAE1 transcription is positively regulated by Myc. Am J Cancer Res. 2:330–334. 2012.PubMed/NCBI | |
Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, et al: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 335:348–353. 2012. View Article : Google Scholar | |
Hoellein A, Fallahi M, Schoeffmann S, Steidle S, Schaub FX, Rudelius M, Laitinen I, Nilsson L, Goga A, Peschel C, et al: Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood. 124:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI | |
González-Prieto R, Cuijpers SA, Kumar R, Hendriks IA and Vertegaal AC: c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle. 14:1859–1872. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mo YY, Yu Y, Theodosiou E, Ee PL and Beck WT: A role for Ubc9 in tumorigenesis. Oncogene. 24:2677–2683. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mattoscio D, Casadio C, Miccolo C, Maffini F, Raimondi A, Tacchetti C, Gheit T, Tagliabue M, Galimberti VE, De Lorenzi F, et al: Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog. 13:e10062622017. View Article : Google Scholar : PubMed/NCBI | |
Lin CH, Liu SY and Lee EH: SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Oncogene. 35:595–607. 2016. View Article : Google Scholar | |
Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K and Wang P: Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res. 73:5742–5753. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moschos SJ, Jukic DM, Athanassiou C, Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C, Acquafondata M, et al: Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum Pathol. 41:1286–1298. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Zhu S, Ding Y, Beck WT and Mo YY: MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res. 15:1550–1557. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gylfe AE, Kondelin J, Turunen M, Ristolainen H, Katainen R, Pitkänen E, Kaasinen E, Rantanen V, Tanskanen T, Varjosalo M, et al: Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology. 145:540–3.e22. 2013. View Article : Google Scholar : PubMed/NCBI | |
Packham S, Warsito D, Lin Y, Sadi S, Karlsson R, Sehat B and Larsson O: Nuclear translocation of IGF-1R via p150 (Glued) and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene. 34:2227–2238. 2015. View Article : Google Scholar | |
Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A and Melchior F: The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun. 7:114822016. View Article : Google Scholar | |
Hatakeyama S: TRIM proteins and cancer. Nat Rev Cancer. 11:792–804. 2011. View Article : Google Scholar : PubMed/NCBI | |
Watanabe M and Hatakeyama S: TRIM proteins and diseases. J Biochem. 161:135–144. 2017.PubMed/NCBI | |
Sho T, Tsukiyama T, Sato T, Kondo T, Cheng J, Saku T, Asaka M and Hatakeyama S: TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim Biophys Acta. 1813:1245–1253. 2011. View Article : Google Scholar : PubMed/NCBI | |
Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S and Hatakeyama S: TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis. 32:995–1004. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shibata M, Sato T, Nukiwa R, Ariga T and Hatakeyama S: TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun. 423:104–109. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu J, Dong M, Yu H, Dai X and Li K: Knockdown of tripartite motif containing 24 by lentivirus suppresses cell growth and induces apoptosis in human colorectal cancer cells. Oncol Res. 22:39–45. 2014. View Article : Google Scholar | |
Chen Y, Guo Y, Yang H, Shi G, Xu G, Shi J, Yin N and Chen D: TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget. 6:23708–23719. 2015.PubMed/NCBI | |
Chen W, Zhao K, Miao C, Xu A, Zhang J, Zhu J, Su S and Wang Z: Silencing Trim59 inhibits invasion/migration and epithelial-to-mesenchymal transition via TGF-β/Smad2/3 signaling pathway in bladder cancer cells. Onco Targets Ther. 10:1503–1512. 2017. View Article : Google Scholar : | |
Bawa-Khalfe T and Yeh ET: SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer. 1:748–752. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kunz K, Wagner K, Mendler L, Hölper S, Dehne N and Müller S: SUMO signaling by hypoxic inactivation of SUMO-specific isopeptidases. Cell Reports. 16:3075–3086. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Chang CC, Lee TH, Luo M, Huang P, Liao PH, Wei S, Li FA, Chen RH, Zhou XZ, et al: SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function. Cancer Res. 73:3951–3962. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen HJ, Zhu HY, Yang C and Ji F: SENP2 regulates hepatocellular carcinoma cell growth by modulating the stability of β-catenin. Asian Pac J Cancer Prev. 13:3583–3587. 2012. View Article : Google Scholar | |
Cheng J, Su M, Jin Y, Xi Q, Deng Y, Chen J, Wang W, Chen Y, Chen L, Shi N, et al: Upregulation of SENP3/SMT3IP1 promotes epithelial ovarian cancer progression and forecasts poor prognosis. Tumour Biol. 39:10104283176945432017. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Sun J, Wang L, Li G, Shen Y, Zhou X and Chen W: Overexpression of SENP5 in oral squamous cell carcinoma and its association with differentiation. Oncol Rep. 20:1041–1045. 2008.PubMed/NCBI | |
Wang K and Zhang XC: Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. Exp Ther Med. 7:1691–1695. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin ZL, Pei H, Xu YH, Yu J and Deng T: The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 20:3566–3573. 2016.PubMed/NCBI | |
Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM and Yeh ET: Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 109:17466–17471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stelter P and Ulrich HD: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425:188–191. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P and Haracska L: Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 40:6049–6059. 2012. View Article : Google Scholar : PubMed/NCBI | |
Armstrong AA, Mohideen F and Lima CD: Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature. 483:59–63. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, et al: The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature. 462:886–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C and Matunis MJ: RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal. 5:ra882012. View Article : Google Scholar : PubMed/NCBI | |
Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 462:935–939. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pfeiffer A, Luijsterburg MS, Acs K, Wiegant WW, Helfricht A, Herzog LK, Minoia M, Böttcher C, Salomons FA, van Attikum H, et al: Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. EMBO J. 36:1066–1083. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Seifert A, Chua JS, Maure JF, Golebiowski F and Hay RT: SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev. 26:1196–1208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galanty Y, Belotserkovskaya R, Coates J and Jackson SP: RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26:1179–1195. 2012. View Article : Google Scholar : PubMed/NCBI | |
He X, Riceberg J, Pulukuri SM, Grossman S, Shinde V, Shah P, Brownell JE, Dick L, Newcomb J and Bence N: Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One. 10:e01238822015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Huang FF, Wu DS, Li WJ, Zhan HE, Peng MY, Fang P, Cao PF, Zhang MM, Zeng H, et al: SUMOylation of insulin-like growth factor 1 receptor, promotes proliferation in acute myeloid leukemia. Cancer Lett. 357:297–306. 2015. View Article : Google Scholar | |
You L, Liu C, Tang H, Liao Y and Fu S: Advances in targeting insulin-like growth factor signaling pathway in cancer treatment. Curr Pharm Des. 20:2899–2911. 2014. View Article : Google Scholar | |
Oh Y and Chung KC: Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling. J Biol Chem. 287:17517–17529. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, Haas P, Hofmann K, Urlaub H, Ovaa H, Wittbrodt J, et al: Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13:930–938. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT and Wang LS: SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun. 460:409–415. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang HJ, Zhou LL, Fu WJ, Zhang CY, Jiang H, Du J and Hou J: β-catenin SUMOylation is involved in the dysregulated proliferation of myeloma cells. Am J Cancer Res. 5:309–320. 2014. | |
Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, Jänne OA and Palvimo JJ: SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 43:848–861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, Tong T and Zhang X: PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase. J Biol Chem. 289:3217–3230. 2014. View Article : Google Scholar | |
Wen D, Xu Z, Xia L, Liu X, Tu Y, Lei H, Wang W, Wang T, Song L, Ma C, et al: Important role of SUMOylation of Spliceosome factors in prostate cancer cells. J Proteome Res. 13:3571–3582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang W, He T, Chai C, Yang Y, Zheng Y, Zhou P, Qiao X, Zhang B, Liu Z, Wang J, et al: Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One. 7:e376932012. View Article : Google Scholar : PubMed/NCBI | |
Shao DF, Wang XH, Li ZY, Xing XF, Cheng XJ, Guo T, Du H, Hu Y, Dong B, Ding N, et al: High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer. Am J Cancer Res. 5:140–154. 2014. | |
Paakinaho V, Kaikkonen S, Makkonen H, Benes V and Palvimo JJ: SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42:1575–1592. 2014. View Article : Google Scholar : | |
Hua G, Ganti KP and Chambon P: Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc Natl Acad Sci USA. 113:E635–E643. 2016. View Article : Google Scholar : | |
Bies J, Sramko M and Wolff L: Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogenactivated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem. 288:36983–36993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du JX, McConnell BB and Yang VW: A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem. 285:28298–28308. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Huang C, Sun X, Xiang B, Wang M, Yeh ET, Chen Y, Li H, Shi G, Cang H, et al: SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J Biol Chem. 285:12906–12915. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carter S, Bischof O, Dejean A and Vousden KH: C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 9:428–435. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, Ivanov A, Rauscher F III, Shuai K, Ng T, Neel BG, et al: Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol. 9:80–85. 2007. View Article : Google Scholar | |
Jin L, Shen K, Chen T, Zhang H and Yu W: SUMO-1 gene silencing inhibits proliferation and promotes apoptosis of human gastric cancer SGC-7901 Cells. Cell Physiol Biochem. 41:987–998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Tang J, Liao D, Wang G, Zhang M, Sang Y, Cao J, Wu Y, Zhang R, Li S, et al: Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann Surg Oncol. 20(Suppl 3): S684–S692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bellail AC, Olson JJ and Hao C: SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat Commun. 5:42342014. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jin J, Zhang J, Wang L and Cao J: Depletion of SENP1 suppresses the proliferation and invasion of triple-negative breast cancer cells. Oncol Rep. 36:2071–2078. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Xia N, Li T, Xu Y, Zou Y, Zuo Y, Fan Q, Bawa-Khalfe T, Yeh ET and Cheng J: SUMO-specific protease-1 promotes prostate cancer progression and metastasis. Oncogene. 32:2493–2498. 2013. View Article : Google Scholar | |
Tan M, Gong H, Wang J, Tao L, Xu D, Bao E, Liu Z and Qiu J: SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBLR1. Sci Rep. 5:139962015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li L, Wu Y, Zhang R, Zhang M, Liao D, Wang G, Qin G, Xu RH and Kang T: CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 76:7277–7289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, et al: Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 25:118–131. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mei Z, Jiao H, Wang W, Li J, Chen G and Xu Y: Polycomb chromobox 4 enhances migration and pulmonary metastasis of hepatocellular carcinoma cell line MHCC97L. Sci China Life Sci. 57:610–617. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Long J, Yuan B, Zheng M, Xiao M, Xu J, Lin X and Feng XH: SUMO modification reverses inhibitory effects of Smad nuclear interacting protein-1 in TGF-β responses. J Biol Chem. 291:24418–24430. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Sun H, Shi X, Wang H, Cui C, Xiao F, Wu C, Guo X and Wang L: SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Tumour Biol. 37:7741–7748. 2016. View Article : Google Scholar | |
Hu W, Fan C, Jiang P, Ma Z, Yan X, Di S, Jiang S, Li T, Cheng Y and Yang Y: Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget. 7:209–223. 2016. | |
Tantai J, Pan X and Hu D: RNF4-mediated SUMOylation is essential for NDRG2 suppression of lung adenocarcinoma. Oncotarget. 7:26837–26843. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH and Chiolo I: Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol. 17:1401–1411. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xu Y, Pang Z, Guo F, Qin Q, Yin T, Sang Y, Feng C, Li X, Jiang L, et al: Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J Hematol Oncol. 8:672015. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Wu B, Huang X, Yuan Z, Nong K, Dong B, Bai Y, Zhu H, Wang W and Ai K: SUMO-specific protease 1 regulates pancreatic cancer cell proliferation and invasion by targeting MMP-9. Tumour Biol. 35:12729–12735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cashman R, Cohen H, Ben-Hamo R, Zilberberg A and Efroni S: SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade. Oncotarget. 5:1071–1082. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mooney SM, Grande JP, Salisbury JL and Janknecht R: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry. 49:1–10. 2010. View Article : Google Scholar | |
Tan MY, Mu XY, Liu B, Wang Y, Bao ED, Qiu JX and Fan Y: SUMO-specific protease 2 suppresses cell migration and invasion through inhibiting the expression of MMP13 in bladder cancer cells. Cell Physiol Biochem. 32:542–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Mata R, Boulter E and Burridge K: The 'invisible hand': Regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol. 12:493–504. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Zhang D, Liu J, Li J, Yu Y, Wu XR and Huang C: RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J Biol Chem. 287:13752–13760. 2012. View Article : Google Scholar : PubMed/NCBI | |
Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT and Malliri A: SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol. 12:1078–1085. 2010. View Article : Google Scholar : PubMed/NCBI | |
Núñez-O'Mara A, Gerpe-Pita A, Pozo S, Carlevaris O, Urzelai B, Lopitz-Otsoa F, Rodríguez MS and Berra E: PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. J Cell Sci. 128:40–49. 2015. View Article : Google Scholar | |
Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen GQ and Zhao KW: Hypoxia inducible factor-1 mediates expression of galectin-1: The potential role in migration/invasion of colorectal cancer cells. Carcinogenesis. 31:1367–1375. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY: Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene. 29:1763–1772. 2010. View Article : Google Scholar : | |
Li H, Niu H, Peng Y, Wang J and He P: Ubc9 promotes invasion and metastasis of lung cancer cells. Oncol Rep. 29:1588–1594. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moschos SJ, Smith AP, Mandic M, Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM and Becker D: SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: Identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene. 26:4216–4225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Tan X, Zhao A, Zhu L, Yin B, Yuan J, Qiang B and Peng X: microRNA-214-mediated UBC9 expression in glioma. BMB Rep. 45:641–646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Wu H and Mo YY: Regulation of bcl-2 expression by Ubc9. Exp Cell Res. 312:1865–1875. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Morrison CD, Parvani JG and Schiemann WP: The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett. 341:30–40. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Núñez-O'Mara A and Berra E: Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem. 394:459–469. 2013.PubMed/NCBI | |
Shao R, Zhang FP, Tian F, Anders Friberg P, Wang X, Sjöland H and Billig H: Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569:293–300. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, Cummins EP, Cagney G and Taylor CT: Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem. 286:4718–4726. 2011. View Article : Google Scholar : | |
Antico Arciuch VG, Tedesco L, Fuertes M and Arzt E: Role of RSUME in inflammation and cancer. FEBS Lett. 589:3330–3335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F and Arzt E: RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 131:309–323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G and Cheng J: Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angio-genesis. J Biol Chem. 285:36682–36688. 2010. View Article : Google Scholar : PubMed/NCBI | |
Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM: Senescence and apoptosis: Dueling or complementary cell fates. EMBO Rep. 15:1139–1153. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davalos AR, Coppe JP, Campisi J and Desprez PY: Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29:273–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, et al: Non-cell-autonomous tumor suppression by p53. Cell. 153:449–460. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M and de Thé H: PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA. 112:14278–14283. 2015. View Article : Google Scholar : PubMed/NCBI | |
Neyret-Kahn H, Benhamed M, Ye T, Le Gras S, Cossec JC, Lapaquette P, Bischof O, Ouspenskaia M, Dasso M, Seeler J, et al: Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res. 23:1563–1579. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Fan Q, Zhang Z, Zou Y, Cai R, Wang Q, Zuo Y and Cheng J: SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation. Cell Cycle. 11:1118–1122. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, Wang Y, Zou M, Hu Y and Xu D: Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-κB/Akt pathways. Gene. 595:175–179. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sudharsan R and Azuma Y: The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci. 125:5819–5829. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H and Wei JF: Inhibitors targeting the SUMOylation pathway: A patent review 2012–2015 (Review). Int J Mol Med. 41:3–12. 2018. | |
Scott DE, Bayly AR, Abell C and Skidmore J: Small molecules, big targets: Drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 15:533–550. 2016. View Article : Google Scholar : PubMed/NCBI |