1
|
Bergers G and Hanahan D: Modes of
resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603.
2008. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Ellis LM and Reardon DA: Is there really a
yin and yang to VEGF-targeted therapies? Lancet Oncol. 11:809–811.
2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferrara N: Pathways mediating
VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev.
21:21–26. 2010. View Article : Google Scholar
|
4
|
Ribatti D: Tumor refractoriness to
anti-VEGF therapy. Oncotarget. 19:46668–46677. 2016.
|
5
|
Jayson GC, Kerbel R, Ellis LM and Harris
AL: Antiangiogenic therapy in oncology: Current status and future
directions. Lancet. 388:518–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jayson GC, Hicklin DJ and Ellis LM:
Antiangiogenic therapyevolving view based on clinical trial
results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Meadows KL and Hurwitz HI: Anti-VEGF
therapies in the clinic. Cold Spring Harb Perspect Med.
2:a0065772012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bottsford-Miller JN, Coleman RL and Sood
AK: Resistance and escape from antiangiogenesis therapy: Clinical
implications and future strategies. J Clin Oncol. 30:4026–4034.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason
GA, Christensen JG and Kerbel RS: Accelerated metastasis after
short-term treatment with a potent inhibitor of tumor angiogenesis.
Cancer Cell. 15:232–239. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pàez-Ribes M, Allen E, Hudock J, Takeda T,
Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D and Casanovas O:
Antiangiogenic therapy elicits malignant progression of tumors to
increased local invasion and distant metastasis. Cancer Cell.
15:220–231. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ebos JM and Kerbel RS: Antiangiogenic
therapy: Impact on invasion, disease progression, and metastasis.
Nat Rev Clin Oncol. 8:210–221. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kieran MW, Kalluri R and Cho YJ: The VEGF
pathway in cancer and disease: Responses, resistance, and the path
forward. Cold Spring Harb Perspect Med. 2:a0065932012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moserle L, Jiménez-Valerio G and Casanovas
O: Antiangiogenic therapies: Going beyond their limits. Cancer
Discov. 4:31–41. 2014. View Article : Google Scholar
|
14
|
Piao Y, Liang J, Holmes L, Henry V, Sulman
E and de Groot JF: Acquired resistance to anti-VEGF therapy in
glioblastoma is associated with a mesenchymal transition. Clin
Cancer Res. 19:4392–4403. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Graeber TG, Osmanian C, Jacks T, Housman
DE, Koch CJ, Lowe SW and Giaccia AJ: Hypoxia-mediated selection of
cells with diminished apoptotic potential in solid tumours. Nature.
379:88–91. 1996. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Semenza GL: Hypoxia-inducible factors:
Mediators of cancer progression and targets for cancer therapy.
Trends Pharmacol Sci. 33:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Semenza GL: Oxygen sensing,
hypoxia-inducible factors, and disease pathophysiology. Annu Rev
Pathol. 9:47–71. 2014. View Article : Google Scholar
|
18
|
Goel HL and Mercurio AM: VEGF targets the
tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Simon T, Gagliano T and Giamas G: Direct
effects of anti-angiogenic therapies on tumor cells: VEGF
signaling. Trends Mol Med. 23:282–292. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Videira PA, Piteira AR, Cabral MG, Martins
C, Correia M, Severino P, Gouveia H, Carrascal M, Almeida JF,
Trindade H, et al: Effects of bevacizumab on autocrine VEGF
stimulation in bladder cancer cell lines. Urol Int. 86:95–101.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fan F, Samuel S, Gaur P, Lu J, Dallas NA,
Xia L, Bose D, Ramachandran V and Ellis LM: Chronic exposure of
colorectal cancer cells to anti-VEGF mAb promotes compensatory
pathways that mediate tumor cell migration. Br J Cancer.
104:1270–1277. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamagishi N, Kondo TS, Masuda K, Nishida
K, Kuwano Y, Dang DT, Dang LH, Nikawa T and Rokutan K: Chronic
inhibition of tumor cell-derived VEGF enhances the malignant
phenotype of colorectal cancer cells. BMC Cancer. 13:2292013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang D, Ding Y, Li Y, Luo WM, Zhang ZF,
Snider J, Vandenbeldt K, Qian CN and Teh BT: Sunitinib acts
primarily on tumor endothelium rather than tumor cells to inhibit
the growth of renal cell carcinoma. Cancer Res. 70:1053–1062. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Shah MA, Wainberg ZA, Catenacci DV,
Hochster HS, Ford J, Kunz P, Lee FC, Kallender H, Cecchi F, Rabe
DC, et al: Phase II study evaluating 2 dosing schedules of oral
foretinib (GSK1363089), cMet/VEGFR2 inhibitor, in patients with
metastatic gastric cancer. PLoS One. 8:e540142013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pfaffl MW: Relative quantification.
Real-time PCR. Dorak MT: 1st edition. Taylor & Francis; London:
2006
|
26
|
Bae DG, Kim TD, Li G, Yoon WH and Chae CB:
Anti-flt1 peptide, a vascular endothelial growth factor receptor
1-specific hexapeptide, inhibits tumor growth and metastasis. Clin
Cancer Res. 11:2651–2661. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chang YW, Su CM, Su YH, Ho YS, Lai HH,
Chen HA, Kuo ML, Hung WC, Chen YW, Wu CH, et al: Novel peptides
suppress VEGFR-3 activity and antagonize VEGFR-3-mediated oncogenic
effects. Oncotarget. 5:3823–3835. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Parker MW, Guo HF, Li X, Linkugel AD and
Vander Kooi CW: Function of members of the neuropilin family as
essential pleiotropic cell surface receptors. Biochemistry.
51:9437–9446. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Prud'homme GJ and Glinka Y: Neuropilins
are multifunctional coreceptors involved in tumor initiation,
growth, metastasis and immunity. Oncotarget. 3:921–939. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Rizzolio S and Tamagnone L: Multifaceted
role of neuropilins in cancer. Curr Med Chem. 18:3563–3575. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Binétruy-Tournaire R, Demangel C, Malavaud
B, Vassy R, Rouyre S, Kraemer M, Plouët J, Derbin C, Perret G and
Mazié JC: Identification of a peptide blocking vascular endothelial
growth factor (VEGF)-mediated angiogenesis. EMBO J. 19:1525–1533.
2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Evans IM, Yamaji M, Britton G, Pellet-Many
C, Lockie C, Zachary IC and Frankel P: Neuropilin-1 signaling
through p130Cas tyrosine phosphorylation is essential for growth
factor-dependent migration of glioma and endothelial cells. Mol
Cell Biol. 31:1174–1185. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bisaro B, Montani M, Konstantinidou G,
Marchini C, Pietrella L, Iezzi M, Galiè M, Orso F, Camporeale A,
Colombo SM, et al: p130Cas/cyclooxygenase-2 axis in the control of
mesenchymal plasticity of breast cancer cells. Breast Cancer Res.
14:R1372012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mui KL, Bae YH, Gao L, Liu SL, Xu T,
Radice GL, Chen CS and Assoian RK: N-cadherin induction by ECM
stiffness and FAK overrides the spreading requirement for
proliferation of vascular smooth muscle cells. Cell Rep.
10:1477–1486. 2015. View Article : Google Scholar
|
35
|
Lu KV, Chang JP, Parachoniak MM, Aghi MK,
Meyronet D, Isachenko N, Fouse SD, Philips JJ, Cheresh DA, Park M,
et al: VEGF inhibits tumor cell invasion and mesenchymal transition
through a MET/VEGFR2 complex. Cancer Cell. 22:21–35. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sennino B, Ishiguro-Oonuma T, Wei Y,
Naylor RM, Williamson CW, Bhagwandin V, Tabruyn SP, You WK, Chapman
HA, Christensen JG, et al: Suppression of tumor invasion and
metastasis by concurrent inhibition of c-Met and VEGF signaling in
pancreatic neuroendocrine tumors. Cancer Discov. 2:270–287. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Mezquita B, Pineda E, Mezquita J, Mezquita
P, Pau M, Codony-Servat J, Martínez-Balibrea E, Mora C, Maurel J
and Mezquita C: LoVo colon cancer cells resistant to oxaliplatin
overexpress c-MET and VEGFR-1 and respond to VEGF with
dephosphorylation of c-MET. Mol Carcinog. 55:411–419. 2016.
View Article : Google Scholar
|
38
|
Peng Y, Liu YM, Li LC, Wang LL and Wu XL:
MicroRNA-338 inhibits growth, invasion and metastasis of gastric
cancer by targeting NRP1 expression. PLoS One. 9:e944222014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi F, Shang L, Pan BQ, Wang XM, Jiang YY,
Hao JJ, Zhang Y, Cai Y, Xu X, Zhan QM, et al: Calreticulin promotes
migration and invasion of esophageal cancer cells by upregulating
neuropilin-1 expression via STAT5A. Clin Cancer Res. 20:6153–6162.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hong TM, Chen YL, Wu YY, Yuan A, Chao YC,
Chung YC, Wu MH, Yang SC, Pan SH, Shih JY, et al: Targeting
neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer
Res. 13:4759–4768. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bachelder RE, Crago A, Chung J, Wendt MA,
Shaw LM, Robinson G and Mercurio AM: Vascular endothelial growth
factor is an autocrine survival factor for neuropilin-expressing
breast carcinoma cells. Cancer Res. 61:5736–5740. 2001.PubMed/NCBI
|
42
|
Soker S, Takashima S, Miao HQ, Neufeld G
and Klagsbrun M: Neuropilin-1 is expressed by endothelial and tumor
cells as an isoform-specific receptor for vascular endothelial
growth factor. Cell. 92:735–745. 1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hansel DE, Wilentz RE, Yeo CJ, Schulick
RD, Montgomery E and Maitra A: Expression of neuropilin-1 in
high-grade dysplasia, invasive cancer, and metastases of the human
gastrointestinal tract. Am J Surg Pathol. 28:347–356. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ochiumi T, Kitadai Y, Tanaka S, Akagi M,
Yoshihara M and Chayama K: Neuropilin-1 is involved in regulation
of apoptosis and migration of human colon cancer. Int J Oncol.
29:105–116. 2006.PubMed/NCBI
|
45
|
Ben Q, Zheng J, Fei J, An W, Li P, Li Z
and Yuan Y: High neuropilin 1 expression was associated with
angiogenesis and poor overall survival in resected pancreatic
ductal adenocarcinoma. Pancreas. 43:744–749. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lee SW, Lee JE, Yoo CY, Ko MS, Park CS and
Yang SH: NRP-1 expression is strongly associated with the
progression of pituitary adenomas. Oncol Rep. 32:1537–1542. 2014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhu H, Cai H, Tang M and Tang J:
Neuropilin-1 is overexpressed in osteosarcoma and contributes to
tumor progression and poor prognosis. Clin Transl Oncol.
16:732–738. 2014. View Article : Google Scholar
|
48
|
Han KS, Raven PA, Frees S, Gust K, Fazli
L, Ettinger S, Hong SJ, Kollmannsberger C, Gleave ME and So AI:
Cellular adaptation to VEGF-targeted antiangiogenic therapy induces
evasive resistance by overproduction of alternative endothelial
cell growth factors in renal cell carcinoma. Neoplasia. 17:805–816.
2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Singh M, Couto SS, Forrest WF, Lima A,
Cheng JH, Molina R, Long JE, Hamilton P, McNutt A, Kasman I, et al:
Anti-VEGF antibody therapy does not promote metastasis in
genetically engineered mouse tumour models. J Pathol. 227:417–430.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chung AS, Kowanetz M, Wu X, Zhuang G, Ngu
H, Finkle D, Komuves L, Peale F and Ferrara N: Differential drug
class-specific metastatic effects following treatment with a panel
of angiogenesis inhibitors. J Pathol. 227:404–416. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Robert NJ, Saleh MN, Paul D, Generali D,
Gressot L, Copur MS, Brufsky AM, Minton SE, Giguere JK, Smith JW
II, et al: Sunitinib plus paclitaxel versus bevacizumab plus
paclitaxel for first-line treatment of patients with advanced
breast cancer: A phase III, randomized, open-label trial. Clin
Breast Cancer. 11:82–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Négrier S, Gravis G, Pérol D, Chevreau C,
Delva R, Bay JO, Blanc E, Ferlay C, Geoffrois L, Rolland F, et al:
Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and
bevacizumab for patients with advanced renal cell carcinoma
(TORAVA): A randomised phase 2 trial. Lancet Oncol. 12:673–680.
2011. View Article : Google Scholar : PubMed/NCBI
|