1
|
Oh IJ and Ahn SJ: Multidisciplinary team
approach for the management of patients with locally advanced
non-small cell lung cancer: Searching the evidence to guide the
decision. Radiat Oncol J. 35:16–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
McGranahan T and Nagpal S: A
Neuro-oncologist's perspective on management of brain metastases in
patients with EGFR mutant non-small cell lung cancer. Curr Treat
Options Oncol. 18:222017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhu HX, Shi L, Zhang Y, Zhu YC, Bai CX,
Wang XD and Zhou JB: Myocyte enhancer factor 2D provides a
cross-talk between chronic inflammation and lung cancer. J Transl
Med. 15:652017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu F, Xu J, Huang Q, Han J, Duan L, Fan J,
Lv Z, Guo M, Hu G, Chen L, et al: The role of interleukin-17 in
lung cancer. Mediators Inflamm. 2016:84940792016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kwiecien I, Stelmaszczyk-Emmel A,
Polubiec-Kownacka M, Dziedzic D and Domagala-Kulawik J: Elevated
regulatory T cells, surface and intracellular CTLA-4 expression and
interleukin-17 in the lung cancer microenvironment in humans.
Cancer Immunol Immunother. 66:161–170. 2017. View Article : Google Scholar :
|
6
|
Chang SH, Mirabolfathinejad SG, Katta H,
Cumpian AM, Gong L, Caetano MS, Moghaddam SJ and Dong C: T helper
17 cells play a critical pathogenic role in lung cancer. Proc Natl
Acad Sci USA. 111:5664–5669. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wei L, Wang H, Yang F, Ding Q and Zhao J:
Interleukin-17 potently increases non-small cell lung cancer
growth. Mol Med Rep. 13:1673–1680. 2016. View Article : Google Scholar
|
8
|
Kuwabara T, Ishikawa F, Kondo M and
Kakiuchi T: The role of IL-17 and related cytokines in inflammatory
autoimmune diseases. Mediators Inflamm. 2017:39080612017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang Q, Du J, Fan J, Lv Z, Qian X, Zhang
X, Han J, Chen C, Wu F and Jin Y: The effect of proinflammatory
cytokines on IL-17RA expression in NSCLC. Med Oncol. 31:1442014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheng S, Shao Z, Liu X, Guo L, Zhang X, Na
Q, Chen X, Ma Y, Zheng J, Song B, et al: Interleukin 17A
polymorphism elevates gene expression and is associated with
increased risk of nonsmall cell lung cancer. DNA Cell Biol.
34:63–68. 2015. View Article : Google Scholar
|
11
|
Cao Y, Zhao D, Li P, Wang L, Qiao B, Qin
X, Li L and Wang Y: MicroRNA-181a-5p impedes IL-17-induced nonsmall
cell lung cancer proliferation and migration through targeting
VCAM-1. Cell Physiol Biochem. 42:346–356. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Q, Han Y, Fei G, Guo Z, Ren T and Liu
Z: IL-17 promoted metastasis of non-small-cell lung cancer cells.
Immunol Lett. 148:144–150. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kirshberg S, Izhar U, Amir G, Demma J,
Vernea F, Beider K, Shlomai Z, Wald H, Zamir G, Shapira OM, et al:
Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression.
PLoS One. 6:e248562011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pan B, Shen J, Cao J, Zhou Y, Shang L, Jin
S, Cao S, Che D, Liu F and Yu Y: Interleukin-17 promotes
angiogenesis by stimulating VEGF production of cancer cells via the
STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep.
5:160532015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu L, Chen X, Zhao J, Martin B, Zepp JA,
Ko JS, Gu C, Cai G, Ouyang W, Sen G, et al: A novel IL-17 signaling
pathway controlling keratinocyte proliferation and tumorigenesis
via the TRAF4-ERK5 axis. J Exp Med. 212:1571–1587. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qiu W, Zhang Y, Liu X, Zhou J, Li Y, Zhou
Y, Shan K, Xia M, Che N, Feng X, et al: Sublytic C5b-9 complexes
induce proliferative changes of glomerular mesangial cells in rat
Thy-1 nephritis through TRAF6-mediated PI3K-dependent Akt1
activation. J Pathol. 226:619–632. 2012. View Article : Google Scholar
|
17
|
Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S
and Yu Y: Interleukin-17-induced EMT promotes lung cancer cell
migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer
Res. 5:1169–1179. 2015.
|
18
|
Sumter TF, Xian L, Huso T, Koo M, Chang
YT, Almasri TN, Chia L, Inglis C, Reid D and Resar LM: The high
mobility group A1 (HMGA1) transcriptome in cancer and development.
Curr Mol Med. 16:353–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Esposito F, De Martino M, D'Angelo D,
Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Trouillas J
and Fusco A: HMGA1-pseudogene expression is induced in human
pituitary tumors. Cell Cycle. 14:1471–1475. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin Y, Chen H, Hu Z, Mao Y, Xu X, Zhu Y,
Xu X, Wu J, Li S, Mao Q, et al: miR-26a inhibits proliferation and
motility in bladder cancer by targeting HMGA1. FEBS Lett.
587:2467–2473. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhong J, Liu C, Zhang QH, Chen L, Shen YY,
Chen YJ, Zeng X, Zu XY and Cao RX: TGF-β1 induces HMGA1 expression:
The role of HMGA1 in thyroid cancer proliferation and invasion. Int
J Oncol. 50:1567–1578. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sekimoto N, Suzuki A, Suzuki Y and Sugano
S: Expression of miR-26a exhibits a negative correlation with HMGA1
and regulates cancer progression by targeting HMGA1 in lung
adenocarcinoma cells. Mol Med Rep. 15:534–542. 2017. View Article : Google Scholar :
|
23
|
Sarhadi VK, Wikman H, Salmenkivi K, Kuosma
E, Sioris T, Salo J, Karjalainen A, Knuutila S and Anttila S:
Increased expression of high mobility group A proteins in lung
cancer. J Pathol. 209:206–212. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Z, Wang Q, Chen F and Liu J:
Elevated expression of HMGA1 correlates with the malignant status
and prognosis of non-small cell lung cancer. Tumour Biol.
36:1213–1219. 2015. View Article : Google Scholar
|
25
|
Musgrove EA, Caldon CE, Barraclough J,
Stone A and Sutherland RL: Cyclin D as a therapeutic target in
cancer. Nat Rev Cancer. 11:558–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qie S and Diehl JA: Cyclin D1, cancer
progression, and opportunities in cancer treatment. J Mol Med
(Berl). 94:1313–1326. 2016. View Article : Google Scholar
|
27
|
Tian XP, Jin XH, Li M, Huang WJ, Xie D and
Zhang JX: The depletion of PinX1 involved in the tumorigenesis of
non-small cell lung cancer promotes cell proliferation via
p15/cyclin D1 pathway. Mol Cancer. 16:742017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shan K, Pang R, Zhao C, Liu X, Gao W,
Zhang J, Zhao D, Wang Y and Qiu W: IL-17-triggered downregulation
of miR-497 results in high HIF-1α expression and consequent IL-1β
and IL-6 production by astrocytes in EAE mice. Cell Mol Immunol.
14:1–15. 2017.
|
29
|
Qiu W, Zhou J, Zhu G, Zhao D, He F, Zhang
J, Lu Y, Yu T, Liu L and Wang Y: Sublytic C5b-9 triggers glomerular
mesangial cell apoptosis via XAF1 gene activation mediated by
p300-dependent IRF-1 acetylation. Cell Death Dis. 5:e11762014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Δ Δ C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
31
|
Al-Azhri J, Zhang Y, Bshara W, Zirpoli G,
McCann SE, Khoury T, Morrison CD, Edge SB, Ambrosone CB and Yao S:
Tumor expression of Vitamin D receptor and breast cancer
histopathological characteristics and prognosis. Clin Cancer Res.
23:97–103. 2017. View Article : Google Scholar :
|
32
|
Surowiak P, Materna V, Györffy B,
Matkowski R, Wojnar A, Maciejczyk A, Paluchowski P, Dziegiel P,
Pudełko M, Kornafel J, et al: Multivariate analysis of oestrogen
receptor alpha, pS2, metallothionein and CD24 expression in
invasive breast cancers. Br J Cancer. 95:339–346. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang J, Li Y, Shan K, Wang L, Qiu W, Lu
Y, Zhao D, Zhu G, He F and Wang Y: Sublytic C5b-9 induces IL-6 and
TGF-β1 production by glomerular mesangial cells in rat Thy-1
nephritis through p300-mediated C/EBPβ acetylation. FASEB J.
28:1511–1525. 2014. View Article : Google Scholar
|
34
|
He F, Zhou M, Yu T, Zhao D, Zhang J, Qiu
W, Lu Y, Liu Y, Wang L and Wang Y: Sublytic C5b-9 triggers
glomerular mesangial cell apoptosis in rat Thy-1 nephritis via
Gadd45 activation mediated by Egr-1 and p300-dependent ATF3
acetylation. J Mol Cell Biol. 8:477–491. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dement GA, Treff NR, Magnuson NS,
Franceschi V and Reeves R: Dynamic mitochondrial localization of
nuclear transcription factor HMGA1. Exp Cell Res. 307:388–401.
2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kolb S, Fritsch R, Saur D, Reichert M,
Schmid RM and Schneider G: HMGA1 controls transcription of insulin
receptor to regulate cyclin D1 translation in pancreatic cancer
cells. Cancer Res. 67:4679–4686. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vendramini-Costa DB and Carvalho JE:
Molecular link mechanisms between inflammation and cancer. Curr
Pharm Des. 18:3831–3852. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee JJ, Kim HJ, Yang CS, Kyeong HH, Choi
JM, Hwang DE, Yuk JM, Park K, Kim YJ, Lee SG, et al: A
high-affinity protein binder that blocks the IL-6/STAT3 signaling
pathway effectively suppresses non-small cell lung cancer. Mol
Ther. 22:1254–1265. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pan B, Che D, Cao J, Shen J, Jin S, Zhou
Y, Liu F, Gu K, Man Y, Shang L, et al: Interleukin-17 levels
correlate with poor prognosis and vascular endothelial growth
factor concentration in the serum of patients with non-small cell
lung cancer. Biomarkers. 20:232–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Quintavalle C, Burmeister K, Piscuoglio S,
Quagliata L, Karamitopoulou E, Sepe R, Fusco A, Terracciano LM,
Andersen JB, Pallante P, et al: High mobility group A1 enhances
tumorigenicity of human cholangiocarcinoma and confers resistance
to therapy. Mol Carcinog. 56:2146–2157. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ahlin C, Lundgren C, Embretsén-Varro E,
Jirström K, Blomqvist C and Fjällskog M: High expression of cyclin
D1 is associated to high proliferation rate and increased risk of
mortality in women with ER-positive but not in ER-negative breast
cancers. Breast Cancer Res Treat. 164:667–678. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huso TH and Resar LM: The high mobility
group A1 molecular switch: Turning on cancer - can we turn it off?
Expert Opin Ther Targets. 18:541–553. 2014. View Article : Google Scholar
|
43
|
Li Z, Qu L, Luo W, Tian Y, Zhai H, Xu K
and Zhong H: Mig-6 is down-regulated in HCC and inhibits the
proliferation of HCC cells via the P-ERK/Cyclin D1 pathway. Exp Mol
Pathol. 102:492–499. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hyun YS, Han DS, Lee AR, Eun CS, Youn J
and Kim HY: Role of IL-17A in the development of colitis-associated
cancer. Carcinogenesis. 33:931–936. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fabre T, Kared H, Friedman SL and Shoukry
NH: IL-17A enhances the expression of profibrotic genes through
upregulation of the TGF-β receptor on hepatic stellate cells in a
JNK-dependent manner. J Immunol. 193:3925–3933. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hommura F, Katabami M, Leaner VD,
Donninger H, Sumter TF, Resar LM and Birrer MJ: HMG-I/Y is a
c-Jun/activator protein-1 target gene and is necessary for
c-Jun-induced anchorage-independent growth in Rat1a cells. Mol
Cancer Res. 2:305–314. 2004.PubMed/NCBI
|
47
|
Zhou WB, Zhong CN, Luo XP, Zhang YY, Zhang
GY, Zhou DX and Liu LP: miR-625 suppresses cell proliferation and
migration by targeting HMGA1 in breast cancer. Biochem Biophys Res
Commun. 470:838–844. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu Y, Wang Y, Zhang Y, Fu J and Zhang G:
Knockdown of HMGA1 expression by short/small hairpin RNA inhibits
growth of ovarian carcinoma cells. Biotechnol Appl Biochem. 59:1–5.
2012. View
Article : Google Scholar : PubMed/NCBI
|
49
|
Yang Q, Wang X, Tang C, Chen X and He J:
H19 promotes the migration and invasion of colon cancer by sponging
miR-138 to upregulate the expression of HMGA1. Int J Oncol.
50:1801–1809. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Żuryń A, Litwiniec A, Safiejko-Mroczka B,
Klimaszewska-Wiśniewska A, Gagat M, Krajewski A, Gackowska L and
Grzanka D: The effect of sulforaphane on the cell cycle, apoptosis
and expression of cyclin D1 and p21 in the A549 non-small cell lung
cancer cell line. Int J Oncol. 48:2521–2533. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Otto T and Sicinski P: Cell cycle proteins
as promising targets in cancer therapy. Nat Rev Cancer. 17:93–115.
2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chikara S, Lindsey K, Dhillon H, Mamidi S,
Kittilson J, Christofidou-Solomidou M and Reindl KM: Enterolactone
induces G1-phase cell cycle arrest in nonsmall cell lung cancer
cells by downregulating cyclins and cyclin-dependent kinases. Nutr
Cancer. 69:652–662. 2017. View Article : Google Scholar : PubMed/NCBI
|