Functions of chemokines in the perineural invasion of tumors (Review)
- Authors:
- Mei Zhang
- Zhuo-Li Zhu
- Xiao-Lei Gao
- Jia-Shun Wu
- Xin-Hua Liang
- Ya-Ling Tang
-
Affiliations: State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: March 8, 2018 https://doi.org/10.3892/ijo.2018.4311
- Pages: 1369-1379
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Liebig C, Ayala G, Wilks JA, Berger DH and Albo D: Perineural invasion in cancer: A review of the literature. Cancer. 115:3379–3391. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lesnik DJ and Boey HP: Perineural invasion of the facial nerve by a cutaneous squamous cell cancer: A case report. Ear Nose Throat J 83. 824:826–827. 2004. | |
Gupta A, Veness M, De'Ambrosis B, Selva D and Huilgol SC: Management of squamous cell and basal cell carcinomas of the head and neck with perineural invasion. Australas J Dermatol. 57:3–13. 2016. View Article : Google Scholar | |
Pour PM, Bell RH and Batra SK: Neural invasion in the staging of pancreatic cancer. Pancreas. 26:322–325. 2003. View Article : Google Scholar : PubMed/NCBI | |
Feng FY, Qian Y, Stenmark MH, Halverson S, Blas K, Vance S, Sandler HM and Hamstra DA: Perineural invasion predicts increased recurrence, metastasis, and death from prostate cancer following treatment with dose-escalated radiation therapy. Int J Radiat Oncol Biol Phys. 81:e361–e367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liebig C, Ayala G, Wilks J, Verstovsek G, Liu H, Agarwal N, Berger DH and Albo D: Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol. 27:5131–5137. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deng J, You Q, Gao Y, Yu Q, Zhao P, Zheng Y, Fang W, Xu N and Teng L: Prognostic value of perineural invasion in gastric cancer: A systematic review and meta-analysis. PLoS One. 9:e889072014. View Article : Google Scholar : PubMed/NCBI | |
Zheng SC, Zhang YR, Luo SY and Zhang LP: The effect of GDNF on matrix-degrading and cell-adhesion during perineural invasion of salivary adenoid cystic carcinoma. Shanghai Kou Qiang Yi Xue. 25:212–216. 2016.In Chinese. PubMed/NCBI | |
Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID and Sogayar MC: Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer. 9:202009. View Article : Google Scholar : PubMed/NCBI | |
Batsakis JG: Nerves and neurotropic carcinomas. Ann Otol Rhinol Laryngol. 94:426–427. 1985.PubMed/NCBI | |
Amit M, Na'ara S and Gil Z: Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 16:399–408. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abbadie C: Chemokines, chemokine receptors and pain. Trends Immunol. 26:529–534. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sommer C and Kress M: Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 361:184–187. 2004. View Article : Google Scholar : PubMed/NCBI | |
Charo IF and Ransohoff RM: The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 354:610–621. 2006. View Article : Google Scholar : PubMed/NCBI | |
Griffith JW, Sokol CL and Luster AD: Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 32:659–702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Szekanecz Z, Vegvari A, Szabo Z and Koch AE: Chemokines and chemokine receptors in arthritis. Front Biosci (Schol Ed). 2:153–167. 2010. View Article : Google Scholar | |
Gao YJ and Ji RR: Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 126:56–68. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rossi D and Zlotnik A: The biology of chemokines and their receptors. Annu Rev Immunol. 18:217–242. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M and Mantovani A: Chemokines and chemokine receptors: An overview. Front Biosci (Landmark Ed). 14:540–551. 2009. View Article : Google Scholar | |
Bryan SA, Jose PJ, Topping JR, Wilhelm R, Soderberg C, Kertesz D, Barnes PJ, Williams TJ, Hansel TT and Sabroe I: Responses of leukocytes to chemokines in whole blood and their antagonism by novel CC-chemokine receptor 3 antagonists. Am J Respir Crit Care Med. 165:1602–1609. 2002. View Article : Google Scholar : PubMed/NCBI | |
Old EA and Malcangio M: Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Curr Opin Pharmacol. 12:67–73. 2012. View Article : Google Scholar | |
Zlotnik A and Yoshie O: The chemokine superfamily revisited. Immunity. 36:705–716. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lefkowitz RJ: Seven transmembrane receptors: A brief personal retrospective. Biochim Biophys Acta. 1768:748–755. 2007. View Article : Google Scholar | |
Hamm HE: The many faces of G protein signaling. J Biol Chem. 273:669–672. 1998. View Article : Google Scholar : PubMed/NCBI | |
Violin JD and Lefkowitz RJ: Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci. 28:416–422. 2007. View Article : Google Scholar : PubMed/NCBI | |
Curnock AP, Logan MK and Ward SG: Chemokine signalling: Pivoting around multiple phosphoinositide 3-kinases. Immunology. 105:125–136. 2002. View Article : Google Scholar : PubMed/NCBI | |
DeWire SM, Ahn S, Lefkowitz RJ and Shenoy SK: Beta-arrestins and cell signaling. Annu Rev Physiol. 69:483–510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Logothetis DE, Kurachi Y, Galper J, Neer EJ and Clapham DE: The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 325:321–326. 1987. View Article : Google Scholar : PubMed/NCBI | |
Wilson J and Balkwill F: The role of cytokines in the epithelial cancer microenvironment. Semin Cancer Biol. 12:113–120. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brew R, Erikson JS, West DC, Flanagan BF and Christmas SE: Interleukin-8 as a growth factor for human colorectal carcinoma cells in vitro. Biochem Soc Trans. 25:S2641997. View Article : Google Scholar | |
Di Cesare S, Marshall JC, Logan P, Antecka E, Faingold D, Maloney SC and Burnier MN Jr: Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF. J Carcinog. 6:22007.PubMed/NCBI | |
Liotta LA: An attractive force in metastasis. Nature. 410:24–25. 2001. View Article : Google Scholar : PubMed/NCBI | |
Panda S, Padhiary SK and Routray S: Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol. 60:8–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N and Sun B: Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res. 27:622008. View Article : Google Scholar : PubMed/NCBI | |
He S, He S, Chen CH, Deborde S, Bakst RL, Chernichenko N, McNamara WF, Lee SY, Barajas F, Yu Z, et al: The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion. Mol Cancer Res. 13:380–390. 2015. View Article : Google Scholar : | |
Shen Z, Li T, Chen D, Jia S, Yang X, Liang L, Chai J, Cheng X, Yang X and Sun M: The CCL5/CCR5 axis contributes to the perineural invasion of human salivary adenoid cystic carcinoma. Oncol Rep. 31:800–806. 2014. View Article : Google Scholar | |
Marchesi F, Piemonti L, Mantovani A and Allavena P: Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 21:77–82. 2010. View Article : Google Scholar : PubMed/NCBI | |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dubový P, Klusáková I, Svízenská I and Brázda V: Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem Cell Biol. 133:323–337. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hart CA, Brown M, Bagley S, Sharrard M and Clarke NW: Invasive characteristics of human prostatic epithelial cells: Understanding the metastatic process. Br J Cancer. 92:503–512. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schimanski CC, Bahre R, Gockel I, Müller A, Frerichs K, Hörner V, Teufel A, Simiantonaki N, Biesterfeld S, Wehler T, et al: Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer. 95:210–217. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling MK and Menger MD: Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia. 9:862–870. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L, Li X, Sheng L, Ma J, Han L, et al: Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget. 6:4717–4732. 2015.PubMed/NCBI | |
Kang H, Mansel RE and Jiang WG: Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol. 26:1429–1434. 2005.PubMed/NCBI | |
Matteucci E, Locati M and Desiderio MA: Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res. 310:176–185. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vaday GG, Hua SB, Peehl DM, Pauling MH, Lin YH, Zhu L, Lawrence DM, Foda HD and Zucker S: CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies. Clin Cancer Res. 10:5630–5639. 2004. View Article : Google Scholar : PubMed/NCBI | |
Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, et al: CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 100:2597–2606. 2002. View Article : Google Scholar : PubMed/NCBI | |
Esencay M, Newcomb EW and Zagzag D: HGF upregulates CXCR4 expression in gliomas via NF-kappaB: Implications for glioma cell migration. J Neurooncol. 99:33–40. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Chen Q, Li D, Li X, Li X, Huang C, Tang Y, Zhou Y, Wang D, Tang K, et al: LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem. 103:245–255. 2008. View Article : Google Scholar | |
Roh J, Muelleman T, Tawfik O and Thomas SM: Perineural growth in head and neck squamous cell carcinoma: A review. Oral Oncol. 51:16–23. 2015. View Article : Google Scholar | |
Zhang J, Sarkar S and Yong VW: The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis. 26:2069–2077. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Yang P, Zhang X, Zhang L, Cui G, Wang Q, Lv L, Zhang Y, Xin X, Yan T, et al: The effect and mechanism of CXCR4 silencing on metastasis suppression of human glioma U87 cell line. Anat Rec (Hoboken). 296:1857–1864. 2013. View Article : Google Scholar | |
Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P and Mantovani A: Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol. 224:39–44. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A and Schall TJ: A new class of membrane-bound chemokine with a CX3C motif. Nature. 385:640–644. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, et al: Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature. 387:611–617. 1997. View Article : Google Scholar : PubMed/NCBI | |
Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS and Foster AC: Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci. 20:1150–1160. 2004. View Article : Google Scholar : PubMed/NCBI | |
Balkwill FR: Tumour necrosis factor and cancer. Prog Growth Factor Res. 4:121–137. 1992. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Jiang J, Huebener N, Wenkel J, Gaedicke G, Xiang R and Lode HN: Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett. 228:187–193. 2005. View Article : Google Scholar : PubMed/NCBI | |
Locatelli M, Boiocchi L, Ferrero S, Martinelli Boneschi F, Zavanone M, Pesce S, Allavena P, Maria Gaini S, Bello L and Mantovani A: Human glioma tumors express high levels of the chemokine receptor CX3CR1. Eur Cytokine Netw. 21:27–33. 2010.PubMed/NCBI | |
Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L, Doglioni C, Anselmo A, Doni A, Bianchi P, et al: The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res. 68:9060–9069. 2008. View Article : Google Scholar : PubMed/NCBI | |
Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C, et al: Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol. 17:945–951. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shulby SA, Dolloff NG, Stearns ME, Meucci O and Fatatis A: CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res. 64:4693–4698. 2004. View Article : Google Scholar : PubMed/NCBI | |
Muller A, Sonkoly E, Eulert C, Gerber PA, Kubitza R, Schirlau K, Franken-Kunkel P, Poremba C, Snyderman C, Klotz LO, et al: Chemokine receptors in head and neck cancer: Association with metastatic spread and regulation during chemotherapy. Int J Cancer. 118:2147–2157. 2006. View Article : Google Scholar | |
Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P and Cheng N: CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem. 287:36593–36608. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010. | |
Vaday GG, Peehl DM, Kadam PA and Lawrence DM: Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate. 66:124–134. 2006. View Article : Google Scholar | |
Borczuk AC, Papanikolaou N, Toonkel RL, Sole M, Gorenstein LA, Ginsburg ME, Sonett JR, Friedman RA and Powell CA: Lung adenocarcinoma invasion in TGFbetaRII-deficient cells is mediated by CCL5/RANTES. Oncogene. 27:557–564. 2008. View Article : Google Scholar | |
Singh S, Singh R, Singh UP, Rai SN, Novakovic KR, Chung LW, Didier PJ, Grizzle WE and Lillard JW Jr: Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer. 125:2288–2295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qi XW, Xia SH, Yin Y, Jin LF, Pu Y, Hua D and Wu HR: Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur Rev Med Pharmacol Sci. 18:1916–1924. 2014.PubMed/NCBI | |
El-Haibi CP, Singh R, Sharma PK, Singh S and Lillard JW Jr: CXCL13 mediates prostate cancer cell proliferation through JNK signalling and invasion through ERK activation. Cell Prolif. 44:311–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Zhang X, Guo H, Fu L, Pan G and Sun Y: CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway. Mol Cell Biochem. 400:287–295. 2015. View Article : Google Scholar | |
Kim HJ, Kim JS, Kang CD, Lee SJ, Kim JY, Yeon JE, Park JJ, Shim JJ, Byun KS, Bak YT, et al: Expression of epidermal growth factor receptor, ErbB2 and matrix metalloproteinase-9 in hepatolithiasis and cholangiocarcinoma. Korean J Gastroenterol. 45:52–59. 2005.In Korean. PubMed/NCBI | |
Duan L, Hu XQ, Feng DY, Lei SY and Hu GH: GPC-1 may serve as a predictor of perineural invasion and a prognosticator of survival in pancreatic cancer. Asian J Surg. 36:7–12. 2013. View Article : Google Scholar | |
Itatsu K, Sasaki M, Yamaguchi J, Ohira S, Ishikawa A, Ikeda H, Sato Y, Harada K, Zen Y, Sato H, et al: Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. Am J Pathol. 174:829–841. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Dai J, Li T, Zhang P, Ma Q, Li Y, Zhou J and Lei D: Expression of EMMPRIN in adenoid cystic carcinoma of salivary glands: Correlation with tumor progression and patients' prognosis. Oral Oncol. 46:755–760. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhang P, Ma Q, Kong L, Li Y, Liu B and Lei D: EMMPRIN contributes to the in vitro invasion of human salivary adenoid cystic carcinoma cells. Oncol Rep. 27:1123–1127. 2012. View Article : Google Scholar | |
Yang X, Zhang P, Ma Q, Kong L, Li Y, Liu B and Lei D: EMMPRIN silencing inhibits proliferation and perineural invasion of human salivary adenoid cystic carcinoma cells in vitro and in vivo. Cancer Biol Ther. 13:85–91. 2012. View Article : Google Scholar | |
Anton ES, Weskamp G, Reichardt LF and Matthew WD: Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci USA. 91:2795–2799. 1994. View Article : Google Scholar | |
Zhu Z, Kleeff J, Kayed H, Wang L, Korc M, Büchler MW and Friess H: Nerve growth factor and enhancement of proliferation, invasion, and tumorigenicity of pancreatic cancer cells. Mol Carcinog. 35:138–147. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M and Büchler MW: Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol. 17:2419–2428. 1999. View Article : Google Scholar : PubMed/NCBI | |
DeSchryver-Kecskemeti K, Balogh K and Neet KE: Nerve growth factor and the concept of neural-epithelial interactions. Immunohistochemical observations in two cases of vasitis nodosa and six cases of prostatic adenocarcinoma. Arch Pathol Lab Med. 111:833–835. 1987.PubMed/NCBI | |
Okada Y, Eibl G, Duffy JP, Reber HA and Hines OJ: Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer. Surgery. 134:293–299. 2003. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Eibl G, Guha S, Duffy JP, Reber HA and Hines OJ: Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells. Clin Exp Metastasis. 21:285–292. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G and Campagnolo L: p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res. 315:3220–3232. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Sun M, Jiang Y, Yang L, Lei D, Lu C, Zhao Y, Zhang P, Yang Y and Li J: Nerve growth factor and tyrosine kinase A in human salivary adenoid cystic carcinoma: expression patterns and effects on in vitro invasive behavior. J Oral Maxillofac Surg. 64:636–641. 2006. View Article : Google Scholar : PubMed/NCBI | |
Taylor S, Herrington S, Prime W, Rudland PS and Barraclough R: S100A4 (p9Ka) protein in colon carcinoma and liver metastases: Association with carcinoma cells and T-lymphocytes. Br J Cancer. 86:409–416. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiang WG: E-cadherin and its associated protein catenins, cancer invasion and metastasis. Br J Surg. 83:437–446. 1996. View Article : Google Scholar : PubMed/NCBI | |
Schmidt KN, Amstad P, Cerutti P and Baeuerle PA: Identification of hydrogen peroxide as the relevant messenger in the activation pathway of transcription factor NF-kappaB. Adv Exp Med Biol. 387:63–68. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Mayo MW and Baldwin AS Jr: TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science. 274:784–787. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Pettaway CA, Uehara H, Bucana CD and Fidler IJ: Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 20:4188–4197. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang S, DeGuzman A, Bucana CD and Fidler IJ: Nuclear factor-kappaB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res. 6:2573–2581. 2000.PubMed/NCBI | |
Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Miu Y, Yang X, Yang X and Zhu M: CCR7 Mediates TGF-β1-induced human malignant glioma invasion, migration, and epithelial-mesenchymal transition by activating MMP2/9 through the nuclear factor kappaB signaling pathway. DNA Cell Biol. 36:853–861. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong W, Tong Y, Li Y, Yuan J, Hu S, Hu T and Song G: Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-κB signaling by paracrine CCL5. Oncotarget. 8:73693–73704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cai J, Du S, Guo Z, Xin B, Wang J, Wei W and Shen X: Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells. Cell Biochem Funct. 35:315–326. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anwar TE and Kleer CG: Tissue-based identification of stem cells and epithelial-to-mesenchymal transition in breast cancer. Hum Pathol. 44:1457–1464. 2013. View Article : Google Scholar : PubMed/NCBI | |
Olmeda D, Montes A, Moreno-Bueno G, Flores JM, Portillo F and Cano A: Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene. 27:4690–4701. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carpenter RL, Paw I, Dewhirst MW and Lo HW: Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 34:546–557. 2015. View Article : Google Scholar | |
Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ and Hotz HG: Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 13:4769–4776. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
He Q, Zhou X, Li S, Jin Y, Chen Z, Chen D, Cai Y, Liu Z, Zhao T and Wang A: MicroRNA-181a suppresses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway. Biochim Biophys Acta. 1830:5258–5266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Yang H, Jiao Y, Wang K, Liu Z, Wu P, Li S and Wang A: SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Sci Rep. 6:259182016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liang X, Li M, Tao X, Tai S, Fan Z, Wang Z, Cheng B and Xia J: Chemokine (CC motif) ligand 18 upregulates Slug expression to promote stem-cell like features by activating the mammalian target of rapamycin pathway in oral squamous cell carcinoma. Cancer Sci. 108:1584–1593. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong G, Chen L, Yin R, Qu Y, Bao Y, Xiao Q, Zhang Z, Shen Y, Li C, Xu Y, et al: Chemokine (C-C motif) ligand 21/C-C chemokine receptor type 7 triggers migration and invasion of human lung cancer cells by epithelial-mesenchymal transition via the extracellular signal-regulated kinase signaling pathway. Mol Med Rep. 15:4100–4108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li G, Yang Y, Xu S, Ma L, He M and Zhang Z: Slug signaling is up-regulated by CCL21/CCR7 [corrected] to induce EMT in human chondrosarcoma. Med Oncol. 32:4782015. | |
Hou X, Zhang Y and Qiao H: CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway. Tumour Biol. 37:641–651. 2016. View Article : Google Scholar | |
Zhao S, Wang J and Qin C: Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway. J Exp Clin Cancer Res. 33:1032014. View Article : Google Scholar : PubMed/NCBI | |
Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, et al: Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 58:537–544. 1989. View Article : Google Scholar : PubMed/NCBI | |
Ip YT, Park RE, Kosman D, Yazdanbakhsh K and Levine M: dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev. 6:1518–1530. 1992. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X, Chua CW, Chan KW, Chan FL, Glackin C, et al: Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 65:5153–5162. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H and Becker KF: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 161:1881–1891. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Rai B, Qi F, Liu T, Wang J, Wang X and Ma B: Influence of the Twist gene on the invasion and metastasis of colon cancer. Oncol Rep. 39:31–44. 2018. | |
Chen W, Gao Q, Han S, Pan F and Fan W: The CCL2/CCR2 axis enhances IL-6-induced epithelial-mesenchymal transition by cooperatively activating STAT3-Twist signaling. Tumour Biol. 36:973–981. 2015. View Article : Google Scholar | |
Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP and Yang J: Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73:662–671. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Liu Y, Xiao L, Guo C, Deng S, Zheng S and Zeng E: The involvement of anterior gradient 2 in the stromal cell-derived factor 1-induced epithelial-mesenchymal transition of glioblastoma. Tumour Biol. 37:6091–6097. 2016. View Article : Google Scholar | |
Koo YJ, Kim TJ, Min KJ, So KA, Jung US and Hong JH: CXCL11 mediates TWIST1-induced angiogenesis in epithelial ovarian cancer. Tumour Biol. 39:10104283177062262017. View Article : Google Scholar : PubMed/NCBI | |
Li K, Xu B, Xu G and Liu R: CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biol. 37:419–424. 2016. View Article : Google Scholar | |
Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C and Mami-Chouaib F: Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 72:6325–6332. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Dubois RN and Richmond A: The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol. 9:688–696. 2009. View Article : Google Scholar : PubMed/NCBI | |
Celesti G, Di Caro G, Bianchi P, Grizzi F, Marchesi F, Basso G, Rahal D, Delconte G, Catalano M, Cappello P, et al: Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. Br J Cancer. 109:2424–2433. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, et al: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 198:1391–1402. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP and Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 10:858–864. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rong Y, Durden DL, Van Meir EG and Brat DJ: 'Pseudopalisading' necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 65:529–539. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Wan S, Sun L, Hu J, Fang D, Zhao R, Yuan S and Zhang L: Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia. Cancer Sci. 103:904–912. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Qiu X, Zhang S, Zhang Q and Wang E: Hypoxia induced CCR7 expression via HIF-1alpha and HIF-2alpha correlates with migration and invasion in lung cancer cells. Cancer Biol Ther. 8:322–330. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Gao S, Wang X, Liu J, Duan Y, Yuan Z, Sheng J, Li S, Wang F, Yu M, et al: Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene. PLoS One. 7:e433992012. View Article : Google Scholar | |
Xiao LJ, Chen YY, Lin P, Zou HF, Lin F, Zhao LN, Li D, Guo L, Tang JB, Zheng XL, et al: Hypoxia increases CX3CR1 expression via HIF-1 and NF-κB in androgen-independent prostate cancer cells. Int J Oncol. 41:1827–1836. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trusolino L, Cavassa S, Angelini P, Andó M, Bertotti A, Comoglio PM and Boccaccio C: HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J. 14:1629–1640. 2000. View Article : Google Scholar : PubMed/NCBI | |
Matteucci E, Modora S, Simone M and Desiderio MA: Hepatocyte growth factor induces apoptosis through the extrinsic pathway in hepatoma cells: Favouring role of hypoxia-inducible factor-1 deficiency. Oncogene. 22:4062–4073. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang YW, Su Y, Volpert OV and Vande Woude GF: Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA. 100:12718–12723. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tacchini L, De Ponti C, Matteucci E, Follis R and Desiderio MA: Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis. 25:2089–2100. 2004. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI | |
Niu G and Chen X: Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 11:1000–1017. 2010. View Article : Google Scholar : PubMed/NCBI | |
Owusu BY, Galemmo R, Janetka J and Klampfer L: Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers (Basel). 9:92017. View Article : Google Scholar |