CRISPR therapeutic tools for complex genetic disorders and cancer (Review)
- Authors:
- Stella Baliou
- Maria Adamaki
- Anthony M. Kyriakopoulos
- Demetrios A. Spandidos
- Mihalis Panayiotidis
- Ioannis Christodoulou
- Vassilis Zoumpourlis
-
Affiliations: National Hellenic Research Foundation, 11635 Athens, Greece, Nasco AD Biotechnology Laboratory, 18536 Piraeus, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK - Published online on: June 6, 2018 https://doi.org/10.3892/ijo.2018.4434
- Pages: 443-468
-
Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG II, Tan W, Penheiter SG, Ma AC and Leung AY: In vivo genome editing using a high-efficiency TALEN system. Nature. 491:114–118. 2012. View Article : Google Scholar | |
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD and Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 435:646–651. 2005. View Article : Google Scholar | |
Kim EJ, Kang KH and Ju JH: CRISPR-Cas9: A promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med (Korean Assoc Intern Med). 32:42–61. 2017. | |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al: Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. 2013. View Article : Google Scholar | |
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, et al: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 32:670–676. 2014. View Article : Google Scholar | |
Doudna JA and Charpentier E: Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 346:12580962014. View Article : Google Scholar | |
Wiedenheft B, Sternberg SH and Doudna JA: RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482:331–338. 2012. View Article : Google Scholar | |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church GM: RNA-guided human genome engineering via Cas9. Science. 339:823–826. 2013. View Article : Google Scholar | |
Wright AV, Nuñez JK and Doudna JA: Biology and applications of CRISPR systems: Harnessing nature' s toolbox for genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar | |
van der Oost J, Westra ER, Jackson RN and Wiedenheft B: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar | |
Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R and van der Oost J: Next generation prokaryotic engineering: The CRISPR-Cas Toolkit. Trends Biotechnol. 34:575–587. 2016. View Article : Google Scholar | |
Bolotin A, Quinquis B, Sorokin A and Ehrlich SD: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 151:2551–2561. 2005. View Article : Google Scholar | |
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K and Brouns SJ: Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 9:e10037422013. View Article : Google Scholar | |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar | |
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS and Qi LS: CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 8:2180–2196. 2013. View Article : Google Scholar | |
Mojica FJ, Díez-Villaseñor C, García-Martínez J and Almendros C: Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 155:733–740. 2009. View Article : Google Scholar | |
Mei Y, Wang Y, Chen H, Sun ZS and Ju XD: Recent progress in CRISPR/Cas9 technology. J Genet Genomics. 43:63–75. 2016. View Article : Google Scholar | |
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. 2013. View Article : Google Scholar | |
Drost J and Clevers H: Who is in the Driver' s Seat: Tracing cancer genes using CRISPR-barcoding. Mol Cell. 63:352–354. 2016. View Article : Google Scholar | |
Lin S, Staahl BT, Alla RK and Doudna JA: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife. 3:e047662014. View Article : Google Scholar | |
Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, et al: Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 55:829–842. 2014. View Article : Google Scholar | |
Roukos V and Misteli T: The biogenesis of chromosome translocations. Nat Cell Biol. 16:293–300. 2014. View Article : Google Scholar | |
Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533:420–424. 2016. View Article : Google Scholar | |
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, et al: In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 540:144–149. 2016. View Article : Google Scholar | |
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F and Nureki O: Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156:935–949. 2014. View Article : Google Scholar | |
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF: Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186:757–761. 2010. View Article : Google Scholar | |
Kabadi AM, Ousterout DG, Hilton IB and Gersbach CA: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42:e1472014. View Article : Google Scholar | |
Sadikovic B, Al-Romaih K, Squire JA and Zielenska M: Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics. 9:394–408. 2008. View Article : Google Scholar | |
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I and Zoumpourlis V: Role of the CRISPR system in controlling gene transcription and monitoring cell fate (Review). Mol Med Rep. 17:1421–1427. 2018. | |
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M and Zhang F: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 33:102–106. 2015. View Article : Google Scholar | |
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L and Jaenisch R: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154:1370–1379. 2013. View Article : Google Scholar | |
Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC and Rodriguez-Perales S: Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun. 5:39642014. View Article : Google Scholar | |
Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH and Orkin SH: Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 292:25562017. View Article : Google Scholar | |
Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, et al: Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 161:1012–1025. 2015. View Article : Google Scholar | |
Choi PS and Meyerson M: Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun. 5:37282014. View Article : Google Scholar | |
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S and Kim JS: Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24:132–141. 2014. View Article : Google Scholar | |
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F and Jaenisch R: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153:910–918. 2013. View Article : Google Scholar | |
Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, et al: Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41:9049–9061. 2013. View Article : Google Scholar | |
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T and Anderson DG: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 32:551–553. 2014. View Article : Google Scholar | |
Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, et al: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 112:10437–10442. 2015. View Article : Google Scholar | |
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, et al: Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14:2263–2272. 2016. View Article : Google Scholar | |
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, et al: CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 159:440–455. 2014. View Article : Google Scholar | |
Kaulich M, Lee YJ, Lönn P, Springer AD, Meade BR and Dowdy SF: Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi. Nucleic Acids Res. 43:e452015. View Article : Google Scholar | |
Li Y, Park AI, Mou H, Colpan C, Bizhanova A, Akama-Garren E, Joshi N, Hendrickson EA, Feldser D, Yin H, et al: A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol. 16:1112015. View Article : Google Scholar | |
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, et al: Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41:e1412013. View Article : Google Scholar | |
Heyer J, Kwong LN, Lowe SW and Chin L: Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer. 10:470–480. 2010. View Article : Google Scholar | |
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R and Crowley DG: et al CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 514:380–384. 2014. View Article : Google Scholar | |
Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, et al: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 6:73912015. View Article : Google Scholar | |
Doerks T, Copley RR, Schultz J, Ponting CP and Bork P: Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12:47–56. 2002. View Article : Google Scholar | |
Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V and Barbacid M: Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell. 4:111–120. 2003. View Article : Google Scholar | |
Findlay GM, Boyle EA, Hause RJ, Klein JC and Shendure J: Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 513:120–123. 2014. View Article : Google Scholar | |
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, et al: Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 21:198–206. 2014. View Article : Google Scholar | |
Krishnaswamy JK, Singh A, Gowthaman U, Wu R, Gorrepati P, Sales Nascimento M, Gallman A, Liu D, Rhebergen AM, Calabro S, et al: Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci USA. 112:3056–3061. 2015. View Article : Google Scholar | |
Billon P, Bryant EE, Joseph SA, Nambiar TS, Hayward SB, Rothstein R and Ciccia A: CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Moll Cell. 67:1068–79.e4. 2017. View Article : Google Scholar | |
Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, Voena C and Chiarle R: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9:1219–1227. 2014. View Article : Google Scholar | |
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, et al: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 516:423–427. 2014. View Article : Google Scholar | |
Nishio M, Kim DW, Wu YL, Nakagawa K, Solomon BJ, Shaw AT, Hashigaki S, Ohki E, Usari T, Paolini J, et al: Crizotinib versus chemotherapy in Asian patients with advanced ALK-positive non-small cell lung cancer. Cancer Res Treat. Jul 6–2017.Epub ahead of print. View Article : Google Scholar | |
Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ and Musunuru K: Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 115:488–492. 2014. View Article : Google Scholar | |
Yang DG, Chung YC, Lai YK, Lai CW, Liu HJ and Hu YC: Corrigendum to 'Avian Influenza Virus Hemagglutinin Display on Baculovirus Envelope: Cytoplasmic Domain Affects Virus Properties and Vaccine Potential'. Mol Ther. 15:17362007. View Article : Google Scholar | |
Cancer Genome Atlas N; Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar | |
Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, et al: Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 516:428–431. 2014. View Article : Google Scholar | |
Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang CH, et al: Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29:1576–1585. 2015. View Article : Google Scholar | |
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, Bin Ali R, van Gerwen B, Siteur B, Drenth AP, et al: Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30:1470–1480. 2016. View Article : Google Scholar | |
Oh B, Hwang S, McLaughlin J, Solter D and Knowles BB: Timely translation during the mouse oocyte-to-embryo transition. Development. 127:3795–3803. 2000. | |
Flemr M and Bühler M: Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 12:709–716. 2015. View Article : Google Scholar | |
Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, Paquet M, Dostie J and Pelletier J: Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 27:2602–2614. 2013. View Article : Google Scholar | |
Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A and Ebert BL: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 32:941–946. 2014. View Article : Google Scholar | |
Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, Shroff AS, Dickins RA, Vakoc CR, Bradner JE, et al: MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell. 25:652–665. 2014. View Article : Google Scholar | |
Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL, et al: CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a Guide RNA Library. Cell Stem Cell. 17:221–232. 2015. View Article : Google Scholar | |
Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW and Kim JS: Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 17:213–220. 2015. View Article : Google Scholar | |
Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, Nostro C, Wang R, Muthuswamy LB, Crawford HC, et al: Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 21:1364–1371. 2015. View Article : Google Scholar | |
Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, Shivak DA, Surosky RT, Gregory PD, Holmes MC, et al: Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 33:1256–1263. 2015. View Article : Google Scholar | |
Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, et al: Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 125:2597–2604. 2015. View Article : Google Scholar | |
Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO and Kan YW: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526–1533. 2014. View Article : Google Scholar | |
Roberts SA, Dong B, Firrman JA, Moore AR, Sang N and Xiao W: Engineering factor Viii for hemophilia gene therapy. J Genet Syndr Gene Ther. 1:12011. | |
Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, Misra K, Cheng SH and Shihabuddin LS: Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington' s disease. Hum Gene Ther. 25:461–474. 2014. View Article : Google Scholar | |
Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF and Lee JM: Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 25:4566–4576. 2016. | |
Monteys AM, Ebanks SA, Keiser MS and Davidson BL: CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther. 25:12–23. 2017. View Article : Google Scholar | |
Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A, Ng B, Radulescu C, et al: Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports. 8:619–633. 2017. View Article : Google Scholar | |
Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, et al: Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science. 342:983–987. 2013. View Article : Google Scholar | |
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R and Olson EN: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 345:1184–1188. 2014. View Article : Google Scholar | |
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, et al: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13:653–658. 2013. View Article : Google Scholar | |
Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, et al: Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 12:1385–1390. 2015. View Article : Google Scholar | |
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D and Li J: Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 13:659–662. 2013. View Article : Google Scholar | |
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, et al: Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25:67–79. 2015. View Article : Google Scholar | |
Xie N, Gong H, Suhl JA, Chopra P, Wang T and Warren ST: Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the Fragile X chromosome. PLoS One. 11:e01654992016. View Article : Google Scholar | |
Horii T, Tamura D, Morita S, Kimura M and Hatada I: Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci. 14:19774–19781. 2013. View Article : Google Scholar | |
Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD and Townes TM: Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12:1668–1677. 2015. View Article : Google Scholar | |
Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA and Moore MD: CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 43:838–848.e3. 2015. View Article : Google Scholar | |
Osborn MJ, Belanto JJ, Tolar J and Voytas DF: Gene editing and its application for hematological diseases. Int J Hematol. 104:18–28. 2016. View Article : Google Scholar | |
Shinkuma S, Guo Z and Christiano AM: Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci USA. 113:5676–5681. 2016. View Article : Google Scholar | |
Bassuk AG, Zheng A, Li Y, Tsang SH and Mahajan VB: Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Sci Rep. 6:199692016. View Article : Google Scholar | |
Ruan GX, Barry E, Yu D, Lukason M, Cheng SH and Scaria A: CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol Ther. 25:331–341. 2017. View Article : Google Scholar | |
Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, et al: CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell. 18:541–553. 2016. View Article : Google Scholar | |
Couzin-Frankel J: Breakthrough of the year 2013. Cancer immunotherapy Science. 342:1432–1433. 2013. | |
Guye P, Ebrahimkhani MR, Kipniss N, Velazquez JJ, Schoenfeld E, Kiani S, Griffith LG and Weiss R: Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 7:102432016. View Article : Google Scholar | |
Sharma SV, Haber DA and Settleman J: Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 10:241–253. 2010. View Article : Google Scholar | |
Lutsenko S: Introduction to the minireview series on modern technologies for in-cell biochemistry. J Biol Chem. 291:3757–3758. 2016. View Article : Google Scholar | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, et al: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar | |
Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar | |
Lancaster MA and Knoblich JA: Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 9:2329–2340. 2014. View Article : Google Scholar | |
Sayin VI and Papagiannakopoulos T: Application of CRISPR-mediated genome engineering in cancer research. Cancer Lett. 387:10–17. 2017. View Article : Google Scholar | |
Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al: Organoid models of human and mouse ductal pancreatic cancer. Cell. 160:324–338. 2015. View Article : Google Scholar | |
Nantasanti S, Spee B, Kruitwagen HS, Chen C, Geijsen N, Oosterhoff LA, van Wolferen ME, Pelaez N, Fieten H, Wubbolts RW, et al: Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Rep. 5:895–907. 2015. View Article : Google Scholar | |
Walsh AJ, Cook RS, Sanders ME, Arteaga CL and Skala MC: Drug response in organoids generated from frozen primary tumor tissues. Sci Rep. 6:188892016. View Article : Google Scholar | |
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015. View Article : Google Scholar | |
Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, de Ligt J, et al: Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160:299–312. 2015. View Article : Google Scholar | |
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, et al: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6:25–36. 2010. View Article : Google Scholar | |
Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, et al: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32:2708–2721. 2013. View Article : Google Scholar | |
Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, et al: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494:247–250. 2013. View Article : Google Scholar | |
Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, et al: Organoid cultures derived from patients with advanced prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar | |
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014. View Article : Google Scholar | |
Heo I and Clevers H: Expanding intestinal stem cells in culture. Cell Res. 25:995–996. 2015. View Article : Google Scholar | |
Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rosenfeld N, et al: Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 23:634–646. 2013. View Article : Google Scholar | |
Kazanjian A and Shroyer NF: NOTCH signaling and ATOH1 in colorectal cancers. Curr Colorectal Cancer Rep. 7:121–127. 2011. View Article : Google Scholar | |
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 18:827–838. 2016. View Article : Google Scholar | |
Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, et al: Sequential cancer mutations in cultured human intestinal stem cells. Nature. 521:43–47. 2015. View Article : Google Scholar | |
Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, et al: Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321:974–977. 2008. View Article : Google Scholar | |
Chames P and Baty D: Bispecific antibodies for cancer therapy: The light at the end of the tunnel. MAbs. 1:539–547. 2009. View Article : Google Scholar | |
Stagg J, Lejeune L, Paquin A and Galipeau J: Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther. 15:597–608. 2004. View Article : Google Scholar | |
Compte M, Nuñez-Prado N, Sanz L and Alvarez-Vallina L: Immunotherapeutic organoids: A new approach to cancer treatment. Biomatter. 3:e238972013. View Article : Google Scholar | |
Fuller MK, Faulk DM, Sundaram N, Shroyer NF, Henning SJ and Helmrath MA: Intestinal crypts reproducibly expand in culture. J Surg Res. 178:48–54. 2012. View Article : Google Scholar | |
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H and van Oudenaarden A: Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 525:251–255. 2015. View Article : Google Scholar | |
Onuma K, Ochiai M, Orihashi K, Takahashi M, Imai T, Nakagama H and Hippo Y: Genetic reconstitution of tumori-genesis in primary intestinal cells. Proc Natl Acad Sci USA. 110:11127–11132. 2013. View Article : Google Scholar | |
Vazin T and Schaffer DV: Engineering strategies to emulate the stem cell niche. Trends Biotechnol. 28:117–124. 2010. View Article : Google Scholar | |
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP and Knoblich JA: Cerebral organoids model human brain development and microcephaly. Nature. 501:373–379. 2013. View Article : Google Scholar | |
Murphy SV and Atala A: 3D bioprinting of tissues and organs. Nat Biotechnol. 32:773–785. 2014. View Article : Google Scholar | |
Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, et al: Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 528:560–564. 2015. View Article : Google Scholar | |
Wilson SS, Tocchi A, Holly MK, Parks WC and Smith JG: A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 8:352–361. 2015. View Article : Google Scholar | |
Wu K, House L, Liu W and Cho WC: Personalized targeted therapy for lung cancer. Int J Mol Sci. 13:11471–11496. 2012. View Article : Google Scholar | |
Tang H and Shrager JB: CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: A personalized molecular surgical therapy. EMBO Mol Med. 8:83–85. 2016. View Article : Google Scholar | |
Cancer Genome Atlas Research Network; Electronic address edsc, Cancer Genome Atlas Research N: Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell. 171:950–65.e28. 2017. View Article : Google Scholar | |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar | |
Consortium EP; ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar | |
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et al: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343:84–87. 2014. View Article : Google Scholar | |
Wang T, Wei JJ, Sabatini DM and Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343:80–84. 2014. View Article : Google Scholar | |
Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MC and Yusa K: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 32:267–273. 2014. View Article : Google Scholar | |
Sanjana NE: Genome-scale CRISPR pooled screens. Anal Biochem. 532:95–99. 2017. View Article : Google Scholar | |
Fellmann C, Gowen BG, Lin PC, Doudna JA and Corn JE: Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov. 16:89–100. 2017. View Article : Google Scholar | |
Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES and Sabatini DM: Identification and characterization of essential genes in the human genome. Science. 350:1096–1101. 2015. View Article : Google Scholar | |
González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV and Huangfu D: An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 15:215–226. 2014. View Article : Google Scholar | |
Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB and Vakoc CR: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 33:661–667. 2015. View Article : Google Scholar | |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP and Lim WA: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152:1173–1183. 2013. View Article : Google Scholar | |
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154:442–451. 2013. View Article : Google Scholar | |
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, et al: Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell. 159:647–661. 2014. View Article : Google Scholar | |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar | |
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517:583–588. 2015. View Article : Google Scholar | |
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB and Jaenisch R: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23:1163–1171. 2013. View Article : Google Scholar | |
Rathe SK, Moriarity BS, Stoltenberg CB, Kurata M, Aumann NK, Rahrmann EP, Bailey NJ, Melrose EG, Beckmann DA, Liska CR, et al: Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia. Sci Rep. 4:60482014. View Article : Google Scholar | |
Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, et al: A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Rep. 17:1193–1205. 2016. View Article : Google Scholar | |
Ruiz S, Mayor-Ruiz C, Lafarga V, Murga M, Vega-Sendino M, Ortega S and Fernandez-Capetillo O: A Genome-wide CRISPR Screen Identifies CDC25A as a Determinant of Sensitivity to ATR Inhibitors. Mol Cell. 62:307–313. 2016. View Article : Google Scholar | |
Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR, Hefter M, Noack M, Savai R, Mernberger M, Charles JP, et al: CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat Chem Biol. 12:22–28. 2016. View Article : Google Scholar | |
Rath O and Kozielski F: Kinesins and cancer. Nat Rev Cancer. 12:527–539. 2012. View Article : Google Scholar | |
Chen C, Siegel D, Gutierrez M, Jacoby M and Hofmeister CC: Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia. Blood. 131:855–863. 2018. View Article : Google Scholar | |
Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, et al: Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 23:60–68. 2017. View Article : Google Scholar | |
Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, Xu H, Xiao T, Cao Z, Peng J, et al: Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 34:1279–1286. 2016. View Article : Google Scholar | |
Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A and Amit I: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 167:1883–1896.e15. 2016. View Article : Google Scholar | |
Hinrichs CS and Rosenberg SA: Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 257:56–71. 2014. View Article : Google Scholar | |
Jensen MC and Riddell SR: Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 33:9–15. 2015. View Article : Google Scholar | |
Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M and Sadelain M: Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 543:113–117. 2017. View Article : Google Scholar | |
Cyranoski D: Chinese scientists to pioneer first human CRISPR trial. Nature. 535:476–477. 2016. View Article : Google Scholar | |
Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar | |
Yang Y, Kelly P, Shaffer AL III, Schmitz R, Yoo HM, Liu X, Huang DW, Webster D, Young RM, Nakagawa M, et al: Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B cell lymphoma. Cancer Cell. 29:494–507. 2016. View Article : Google Scholar | |
DeWitt MA, Magis W, Bray L, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Muñoz DP, Boffelli D, et al: Selection-free genome editing of the sickle mutation in human adult hemato-poietic stem/progenitor cells. Sci Transl Med. 8:360ra1342016. View Article : Google Scholar | |
Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF and Gao X: Harnessing the clustered regularly inter-spaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 22:404–412. 2015. View Article : Google Scholar | |
Dong C, Qu L, Wang H, Wei L, Dong Y and Xiong S: Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 118:110–117. 2015. View Article : Google Scholar | |
Price AA, Sampson TR, Ratner HK, Grakoui A and Weiss DS: Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA. 112:6164–6169. 2015. View Article : Google Scholar | |
Wang J and Quake SR: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA. 111:13157–13162. 2014. View Article : Google Scholar | |
Zhen S, Hua L, Takahashi Y, Narita S, Liu YH and Li Y: In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 450:1422–1426. 2014. View Article : Google Scholar | |
Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, et al: Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 12:1160–1166. 2006. View Article : Google Scholar | |
Saglio F, Hanley PJ and Bollard CM: The time is now: Moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy. 16:149–159. 2014. View Article : Google Scholar | |
Lieberman J, Skolnik PR, Parkerson GR III, Fabry JA, Landry B, Bethel J and Kagan J: Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 90:2196–2206. 1997. | |
Brodie SJ, Lewinsohn DA, Patterson BK, Jiyamapa D, Krieger J, Corey L, Greenberg PD and Riddell SR: In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med. 5:34–41. 1999. View Article : Google Scholar | |
Tan R, Xu X, Ogg GS, Hansasuta P, Dong T, Rostron T, Luzzi G, Conlon CP, Screaton GR, McMichael AJ, et al: Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome. Blood. 93:1506–1510. 1999. | |
Lam S, Sung J, Cruz C, Castillo-Caro P, Ngo M, Garrido C, Kuruc J, Archin N, Rooney C, Margolis D, et al: Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther. 23:387–395. 2015. View Article : Google Scholar | |
Patel S, Lam S, Cruz CR, Wright K, Cochran C, Ambinder RF and Bollard CM: Functionally active HIV-specific T cells that target Gag and Nef can be expanded from virus-naive donors and target a range of viral epitopes: Implications for a cure strategy after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 22:536–541. 2016. View Article : Google Scholar | |
Sung JA, Lam S, Garrido C, Archin N, Rooney CM, Bollard CM and Margolis DM: Expanded cytotoxic T-cell lymphocytes target the latent HIV reservoir. J Infect Dis. 212:258–263. 2015. View Article : Google Scholar | |
Colovos C, Villena-Vargas J and Adusumilli PS: Safety and stability of retrovirally transduced chimeric antigen receptor T cells. Immunotherapy. 4:899–902. 2012. View Article : Google Scholar | |
Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, Vogel AN, Kalos M, Riley JL, Deeks SG, et al: Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 4:132ra532012. View Article : Google Scholar | |
Joseph A, Zheng JH, Follenzi A, Dilorenzo T, Sango K, Hyman J, Chen K, Piechocka-Trocha A, Brander C, Hooijberg E, et al: Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 82:3078–3089. 2008. View Article : Google Scholar | |
Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S, et al: Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 96:785–793. 2000. | |
Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Christopherson C, June CH, et al: A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 5:788–797. 2002. View Article : Google Scholar | |
Koretzky GA: Multiple roles of CD4 and CD8 in T cell activation. J Immunol. 185:2643–2644. 2010. View Article : Google Scholar | |
Hütter G and Ganepola S: Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. Sci World J. 11:1068–1076. 2011. View Article : Google Scholar | |
Bitinaite J, Wah DA, Aggarwal AK and Schildkraut I: FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA. 95:10570–10575. 1998. View Article : Google Scholar | |
Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, Gregory PD, Holmes MC and Torbett BE: Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther. 20:849–859. 2002. View Article : Google Scholar | |
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 370:901–910. 2014. View Article : Google Scholar | |
Pattanayak V, Ramirez CL, Joung JK and Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 8:765–770. 2011. View Article : Google Scholar | |
Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, et al: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 5:155772015. View Article : Google Scholar | |
Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W and Khalili K: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 6:225552016. View Article : Google Scholar | |
Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C and Riddell SR: Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 118:294–305. 2008. View Article : Google Scholar | |
Chapuis AG, Casper C, Kuntz S, Zhu J, Tjernlund A, Diem K, Turtle CJ, Cigal ML, Velez R, Riddell S, et al: HIV-specific CD8+ T cells from HIV+ individuals receiving HAART can be expanded ex vivo to augment systemic and mucosal immunity in vivo. Blood. 117:5391–5402. 2011. View Article : Google Scholar | |
Hashimoto M and Takemoto T: Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 5:113152015. View Article : Google Scholar | |
Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K and Kühn R: Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16:42016. View Article : Google Scholar | |
Cottle RN, Lee CM, Archer D and Bao G: Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep. 5:160312015. View Article : Google Scholar | |
Oude Blenke E, Evers MJ, Mastrobattista E and van der Oost J: CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. J Control Release. 244:139–148. 2016. View Article : Google Scholar | |
Han X, Liu Z, Jo MC, Zhang K, Li Y, Zeng Z, Li N, Zu Y and Qin L: CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv. 1:e15004542015. View Article : Google Scholar | |
D'Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H and Geijsen N: Efficient intracellular delivery of native proteins. Cell. 161:674–690. 2015. View Article : Google Scholar | |
Ha JS, Lee JS, Jeong J, Kim H, Byun J, Kim SA, Lee HJ, Chung HS, Lee JB and Ahn DR: Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J Control Release. 250:27–35. 2017. View Article : Google Scholar | |
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL and Gu Z: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 54:12029–12033. 2015. View Article : Google Scholar | |
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK and Kim H: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24:1020–1027. 2014. View Article : Google Scholar | |
Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ and Church GM: A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 13:868–874. 2016. View Article : Google Scholar | |
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R and Olson EN: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 351:400–403. 2016. View Article : Google Scholar | |
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, et al: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 351:403–407. 2016. View Article : Google Scholar | |
Gomez EJ, Gerhardt K, Judd J, Tabor JJ and Suh J: Light-Activated Nuclear translocation of adeno-associated virus nanoparticles using phytochrome B for enhanced, tunable, and spatially programmable gene delivery. ACS Nano. 10:225–237. 2016. View Article : Google Scholar | |
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al: In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520:186–191. 2015. View Article : Google Scholar | |
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY and Liu DR: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 33:73–80. 2015. View Article : Google Scholar | |
Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, et al: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA. 113:2868–2873. 2016. View Article : Google Scholar | |
Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, et al: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 29:816–823. 2011. View Article : Google Scholar | |
Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ, et al: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 147:107–119. 2011. View Article : Google Scholar | |
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al: DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31:827–832. 2013. View Article : Google Scholar | |
Heigwer F, Kerr G and Boutros M: E-CRISP: Fast CRISPR target site identification. Nat Methods. 11:122–123. 2014. View Article : Google Scholar | |
Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, et al: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 10:361–365. 2013. View Article : Google Scholar | |
Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI and Kim JS: Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 12:237–243. 2015. View Article : Google Scholar | |
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, et al: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 33:187–197. 2015. View Article : Google Scholar | |
Fu Y, Sander JD, Reyon D, Cascio VM and Joung JK: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 32:279–284. 2014. View Article : Google Scholar | |
Kim D, Kim S, Kim S, Park J and Kim JS: Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26:406–415. 2016. View Article : Google Scholar | |
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E and Alt FW: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 33:179–186. 2015. View Article : Google Scholar | |
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, et al: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 343:12479972014. View Article : Google Scholar | |
Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, et al: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154:1380–1389. 2013. View Article : Google Scholar | |
McCaffrey J, Sibert J, Zhang B, Zhang Y, Hu W, Riethman H and Xiao M: CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res. 44. e112016. View Article : Google Scholar | |
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ and Joung JK: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 32:569–576. 2014. View Article : Google Scholar | |
Wyvekens N, Topkar VV, Khayter C, Joung JK and Tsai SQ: Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther. 26:425–431. 2015. View Article : Google Scholar | |
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z and Joung JK: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 529:490–495. 2016. View Article : Google Scholar | |
Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ and Thomson JA: Efficient genome engineering in human pluripotent stem cells using Cas9 fro Neisseria meningitidis. Proc Natl Acad Sci USA. 110:15644–15649. 2013. View Article : Google Scholar | |
Walsh RM and Hochedlinger K: A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci USA. 110:15514–15515. 2013. View Article : Google Scholar | |
Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E, Mutlu M, Ersan PG, Altundağ MK, Zhang JD, et al: The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget. 7:49859–49877. 2016. View Article : Google Scholar | |
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z and Mo YY: Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 7:e22622016. View Article : Google Scholar | |
Engel BJ, Bowser JL, Broaddus RR and Carson DD: MUC1 stimulates EGFR expression and function in endometrial cancer. Oncotarget. 7:32796–32809. 2016. View Article : Google Scholar | |
Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD and Meyerson M: Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 48:176–182. 2016. View Article : Google Scholar | |
Kavlashvili T, Jia Y, Dai D, Meng X, Thiel KW, Leslie KK and Yang S: Inverse relationship between progesterone receptor and Myc in endometrial cancer. PLoS One. 11:e01489122016. View Article : Google Scholar | |
Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N and Kaneda Y: CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 6:22361–22374. 2015. View Article : Google Scholar | |
Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sánchez-Rivera FJ, Lofgren SM, Kuschma T, Hahn SA, Vangala D, et al: Combined inhibition of BET family proteins and histone deacet-ylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 21:1163–1171. 2015. View Article : Google Scholar | |
Zhang Z, Christin JR, Wang C, Ge K, Oktay MH and Guo W: Mammary-stem-cell-based somatic mouse models reveal breast cancer drivers causing cell fate dysregulation. Cell Rep. 16:3146–3156. 2016. View Article : Google Scholar | |
Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, Tookman LA, Orange C, Athineos D, Mason S, et al: CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 76:6118–6129. 2016. View Article : Google Scholar | |
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, et al: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 6:363–372. 2015. View Article : Google Scholar |