1
|
Akoluk A, Barazani Y, Slova D, Shah S and
Tareen B: Carcinosarcoma of the bladder: Case report and review of
the literature. Can Urol Assoc J. 5:E69–E73. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ottaviani G and Jaffe N: The epidemiology
of osteosarcoma. Cancer Treat Res. 152:3–13. 2009. View Article : Google Scholar
|
3
|
Gu X, Ding J, Zhang Z, Li Q, Zhuang X and
Chen X: Polymeric nanocarriers for drug delivery in osteosarcoma
treatment. Curr Pharm Des. 21:5187–5197. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Grote HJ, Braun M, Kalinski T, Pomjanski
N, Back W, Bleyl U, Böcking A and Roessner A: Spontaneous malignant
transformation of conventional giant cell tumor. Skeletal Radiol.
33:169–175. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bennani S, Louahlia S, Aboutaieb R, el
Mrini M and S: Carcinosarcoma of the bladder. Apropos of two cases
J Urol (Paris). 100:210–216. 1994.In French.
|
6
|
Chiu KC, Lin MC, Liang YC and Chen CY:
Renal carcinosarcoma: Case report and review of literature. Ren
Fail. 30:1034–1039. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nishisho T, Sakai T, Tezuka F, Higashino
K, Takao S, Takata Y, Miyagi R, Toki S, Abe M, Yamashita K, et al:
Delayed diagnosis of primary bone and soft tissue tumors initially
treated as degenerative spinal disorders. J Med Invest. 63:274–277.
2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yi BR, Choi KJ, Kim SU and Choi KC:
Therapeutic potential of stem cells expressing suicide genes that
selectively target human breast cancer cells: Evidence that they
exert tumoricidal effects via tumor tropism (review). Int J Oncol.
41:798–804. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wildner O: In situ use of suicide genes
for therapy of brain tumours. Ann Med. 31:421–429. 1999. View Article : Google Scholar
|
10
|
van Dillen IJ, Mulder NH, Vaalburg W, de
Vries EF and Hospers GA: Influence of the bystander effect on
HSV-tk/GCV gene therapy. A review Curr Gene Ther. 2:307–322. 2002.
View Article : Google Scholar
|
11
|
Määttä AM, Samaranayake H, Pikkarainen J,
Wirth T and Ylä-Herttuala S: Adenovirus mediated herpes simplex
virus-thymidine kinase/ganciclovir gene therapy for resectable
malignant glioma. Curr Gene Ther. 9:356–367. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Czyż J, Szpak K and Madeja Z: The role of
connexins in prostate cancer promotion and progression. Nat Rev
Urol. 9:274–282. 2012. View Article : Google Scholar
|
13
|
El-Sabban ME, Abi-Mosleh LF and Talhouk
RS: Developmental regulation of gap junctions and their role in
mammary epithelial cell differentiation. J Mammary Gland Biol
Neoplasia. 8:463–473. 2003. View Article : Google Scholar
|
14
|
Abbaci M, Barberi-Heyob M, Blondel W,
Guillemin F and Didelon J: Advantages and limitations of commonly
used methods to assay the molecular permeability of gap junctional
intercellular communication. Biotechniques. 45:33–52. 56–62. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Aasen T: Connexins: Junctional and
non-junctional modulators of proliferation. Cell Tissue Res.
360:685–699. 2015. View Article : Google Scholar
|
16
|
Ehrlich HP: A snapshot of direct cell-cell
communications in wound healing and scarring. Adv Wound Care (New
Rochelle). 2:113–121. 2013. View Article : Google Scholar
|
17
|
Falk MM, Fong JT, Kells RM, O'Laughlin MC,
Kowal TJ and Thévenin AF: Degradation of endocytosed gap junctions
by autophagosomal and endo-/lysosomal pathways: A perspective. J
Membr Biol. 245:465–476. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang JX, Siller-Jackson AJ and Burra S:
Roles of gap junctions and hemichannels in bone cell functions and
in signal transmission of mechanical stress. Front Biosci.
12:1450–1462. 2007. View
Article : Google Scholar :
|
19
|
Klaunig JE: Alterations in intercellular
communication during the stage of promotion. Proc Soc Exp Biol Med.
198:688–692. 1991. View Article : Google Scholar : PubMed/NCBI
|
20
|
Barry J and Lock RB: Small
ubiquitin-related modifier-1: Wrestling with protein regulation.
Int J Biochem Cell Biol. 43:37–40. 2011. View Article : Google Scholar
|
21
|
Morris JR: SUMO in the mammalian response
to DNA damage. Biochem Soc Trans. 38:92–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hoeller D and Dikic I: Targeting the
ubiquitin system in cancer therapy. Nature. 458:438–444. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Moschos SJ and Mo YY: Role of SUMO/Ubc9 in
DNA damage repair and tumorigenesis. J Mol Histol. 37:309–319.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Praefcke GJ, Hofmann K and Dohmen RJ: SUMO
playing tag with ubiquitin. Trends Biochem Sci. 37:23–31. 2012.
View Article : Google Scholar
|
25
|
Princz A and Tavernarakis N: The role of
SUMOylation in ageing and senescent decline. Mech Ageing Dev.
162:85–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kjenseth A, Fykerud TA, Sirnes S, Bruun J,
Yohannes Z, Kolberg M, Omori Y, Rivedal E and Leithe E: The gap
junction channel protein connexin 43 is covalently modified and
regulated by SUMOylation. J Biol Chem. 287:15851–15861. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu
S, Yu S and Liu X: miR-7 inhibits glioblastoma growth by
simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK
pathways. Int J Oncol. 44:1571–1580. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chai L, Kang X-J, Sun Z-Z, Zeng MF, Yu SR,
Ding Y, Liang JQ, Li TT and Zhao J: MiR-497-5p, miR-195-5p and
miR-455-3p function as tumor suppressors by targeting hTERT in
melanoma A375 cells. Cancer Manag Res. 10:989–1003. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu X, Li G, Su Z, Jiang Z, Chen L, Wang
J, Yu S and Liu Z: Poly(amido amine) is an ideal carrier of miR-7
for enhancing gene silencing effects on the EGFR pathway in U251
glioma cells. Oncol Rep. 29:1387–1394. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang Z, Zhang L, Zhang L, Wang S, Zheng
M, Li Y and Liu X: Enhancement of B-cell translocation gene-2
inhibits proliferation and metastasis of colon cancer cells].
Zhonghua Zhong Liu Za Zhi. 37:330–335. 2015.In Chinese. PubMed/NCBI
|
31
|
Li XD, Chang B, Chen B, Liu ZY, Liu DX,
Wang JS, Hou GQ, Huang DY and Du SX: Panax notoginseng saponins
potentiate osteogenesis of bone marrow stromal cells by modulating
gap junction intercellular communication activities. Cell Physiol
Biochem. 26:1081–1092. 2010. View Article : Google Scholar
|
32
|
Liu D and Liu A: Administration of vitamin
E prevents thymocyte apoptosis in murine sarcoma S180 tumor bearing
mice. Cell Mol Biol (Noisy-le-grand). 58(Suppl): OL1671–OL1679.
2012.
|
33
|
Wasik U and Filipek A: The CacyBP/SIP
protein is sumoylated in neuroblastoma NB2a cells. Neurochem Res.
38:2427–2432. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY:
Ubc9 promotes breast cell invasion and metastasis in a
sumoylation-independent manner. Oncogene. 29:1763–1772. 2010.
View Article : Google Scholar :
|
35
|
Galanty Y, Belotserkovskaya R, Coates J,
Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1
and PIAS4 promote responses to DNA double-strand breaks. Nature.
462:935–939. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Matt S and Hofmann TG: The DNA
damage-induced cell death response: A roadmap to kill cancer cells.
Cell Mol Life Sci. 73:2829–2850. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hong SS, Lee H and Kim KW: HIF-1alpha: A
valid therapeutic target for tumor therapy. Cancer Res Treat.
36:343–353. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Garbuz DG: Regulation of heat shock gene
expression in response to stress. Mol Biol (Mosk). 51:400–417.
2017.In Russian. View Article : Google Scholar
|
39
|
Rape M: Ubiquitylation at the crossroads
of development and disease. Nat Rev Mol Cell Biol. 19:59–70. 2018.
View Article : Google Scholar
|
40
|
Perry JA, Kiezun A, Tonzi P, Van Allen EM,
Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS,
et al: Complementary genomic approaches highlight the PI3K/mTOR
pathway as a common vulnerability in osteosarcoma. Proc Natl Acad
Sci USA. 111:E5564–E5573. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang J, Yu XH, Yan YG, Wang C and Wang
WJ: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta.
444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Graziano AC, Cardile V, Avola R, Vicario
N, Parenti C, Salvatorelli L, Magro G and Parenti R: Wilms' tumor
gene 1 silencing inhibits proliferation of human osteosarcoma MG-63
cell line by cell cycle arrest and apoptosis activation.
Oncotarget. 8:13917–13931. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xia W, Tian H, Cai X, Kong H, Fu W, Xing
W, Wang Y, Zou M, Hu Y and Xu D: Inhibition of SUMO-specific
protease 1 induces apoptosis of astroglioma cells by regulating
NF-κB/Akt pathways. Gene. 595:175–179. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
de la Cruz-Herrera CF, Campagna M, Lang V,
del Carmen González-Santamaría J, Marcos-Villar L, Rodríguez MS,
Vidal A, Collado M and Rivas C: SUMOylation regulates AKT1
activity. Oncogene. 34:1442–1450. 2015. View Article : Google Scholar
|
45
|
Lin CH, Liu SY and Lee EH: SUMO
modification of Akt regulates global SUMOylation and substrate
SUMOylation specificity through Akt phosphorylation of Ubc9 and
SUMO1. Oncogene. 35:595–607. 2016. View Article : Google Scholar
|