1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nolan K, Kattamuri C, Luedeke DM, Deng X,
Jagpal A, Zhang F, Linhardt RJ, Kenny AP, Zorn AM and Thompson TB:
Structure of protein related to Dan and Cerberus: Insights into the
mechanism of bone morphogenetic protein antagonism. Structure.
21:1417–1429. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen B, Blair DG, Plisov S, Vasiliev G,
Perantoni AO, Chen Q, Athanasiou M, Wu JY, Oppenheim JJ and Yang D:
Cutting edge: Bone morphogenetic protein antagonists Drm/Gremlin
and Dan interact with Slits and act as negative regulators of
monocyte chemotaxis. J Immunol. 173:5914–5917. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
McMahon R, Murphy M, Clarkson M, Taal M,
Mackenzie HS, Godson C, Martin F and Brady HR: IHG-2, a mesangial
cell gene induced by high glucose, is human gremlin. Regulation by
extracellular glucose concentration, cyclic mechanical strain, and
transforming growth factor-beta1. J Biol Chem. 275:9901–9904. 2000.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Walsh DW, Godson C, Brazil DP and Martin
F: Extracellular BMP-antagonist regulation in development and
disease: Tied up in knots. Trends Cell Biol. 20:244–256. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Q, Huo Y, Guo Y, Zheng X, Sun W and Hao
Z: Generation and applications of a DNA aptamer against Gremlin-1.
Molecules. 22:222017.
|
8
|
Topol LZ, Modi WS, Koochekpour S and Blair
DG: DRM/GREMLIN (CKTSF1B1) maps to human chromosome 15 and is
highly expressed in adult and fetal brain. Cytogenet Cell Genet.
89:79–84. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hsu DR, Economides AN, Wang X, Eimon PM
and Harland RM: The Xenopus dorsalizing factor Gremlin identifies a
novel family of secreted proteins that antagonize BMP activities.
Mol Cell. 1:673–683. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Topol LZ, Bardot B, Zhang Q, Resau J,
Huillard E, Marx M, Calothy G and Blair DG: Biosynthesis,
post-translation modification, and functional characterization of
Drm/Gremlin. J Biol Chem. 275:8785–8793. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sneddon JB, Zhen HH, Montgomery K, van de
Rijn M, Tward AD, West R, Gladstone H, Chang HY, Morganroth GS, Oro
AE, et al: Bone morphogenetic protein antagonist Gremlin 1 is
widely expressed by cancer-associated stromal cells and can promote
tumor cell proliferation. Proc Natl Acad Sci USA. 103:14842–14847.
2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thayer SP, di Magliano MP, Heiser PW,
Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernández-del
Castillo C, Yajnik V, et al: Hedgehog is an early and late mediator
of pancreatic cancer tumorigenesis. Nature. 425:851–856. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Feldmann G, Dhara S, Fendrich V, Bedja D,
Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C,
Jimeno A, et al: Blockade of hedgehog signaling inhibits pancreatic
cancer invasion and metastases: A new paradigm for combination
therapy in solid cancers. Cancer Res. 67:2187–2196. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W,
Lei J, Ma J, Wang X, Lv S, et al: Sonic hedgehog paracrine
signaling activates stromal cells to promote perineural invasion in
pancreatic cancer. Clin Cancer Res. 20:4326–4338. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Islam SS, Mokhtari RB, Noman AS, Uddin M,
Rahman MZ, Azadi MA, Zlotta A, van der Kwast T, Yeger H and Farhat
WA: Sonic hedgehog (Shh) signaling promotes tumorigenicity and
stemness via activation of epithelial-to-mesenchymal transition
(EMT) in bladder cancer. Mol Carcinog. 55:537–551. 2016. View Article : Google Scholar
|
16
|
Yauch RL, Gould SE, Scales SJ, Tang T,
Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, et al: A
paracrine requirement for hedgehog signalling in cancer. Nature.
455:406–410. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Verheyden JM and Sun X: An Fgf/Gremlin
inhibitory feedback loop triggers termination of limb bud
outgrowth. Nature. 454:638–641. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Panman L, Galli A, Lagarde N, Michos O,
Soete G, Zuniga A and Zeller R: Differential regulation of gene
expression in the digit forming area of the mouse limb bud by SHH
and Gremlin 1/FGF-mediated epithelial-mesenchymal signalling.
Development. 133:3419–3428. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zúñiga A, Haramis AP, McMahon AP and
Zeller R: Signal relay by BMP antagonism controls the SHH/FGF4
feedback loop in vertebrate limb buds. Nature. 401:598–602. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Niswander L, Jeffrey S, Martin GR and
Tickle C: A positive feedback loop coordinates growth and
patterning in the vertebrate limb. Nature. 371:609–612. 1994.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Bénazet J-D, Bischofberger M, Tiecke E,
Gonçalves A, Martin JF, Zuniga A, Naef F and Zeller R: A
self-regulatory system of interlinked signaling feedback loops
controls mouse limb patterning. Science. 323:1050–1053. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cao L, Xiao X, Lei J, Duan W, Ma Q and Li
W: Curcumin inhibits hypoxia-induced epithelial mesenchymal
transition in pancreatic cancer cells via suppression of the
hedgehog signaling pathway. Oncol Rep. 35:3728–3734. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Li W, Cao L, Chen X, Lei J and Ma Q:
Resveratrol inhibits hypoxia-driven ROS-induced invasive and
migratory ability of pancreatic cancer cells via suppression of the
Hedgehog signaling pathway. Oncol Rep. 35:1718–1726. 2016.
View Article : Google Scholar
|
24
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Vonlaufen A, Phillips PA, Yang L, Xu Z,
Fiala-Beer E, Zhang X, Pirola RC, Wilson JS and Apte MV: Isolation
of quiescent human pancreatic stellate cells: A promising in vitro
tool for studies of human pancreatic stellate cell biology.
Pancreatology. 10:434–443. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Han L, Ma J, Duan W, Zhang L, Yu S, Xu Q,
Lei J, Li X, Wang Z, Wu Z, et al: Pancreatic stellate cells
contribute pancreatic cancer pain via activation of sHH signaling
pathway. Oncotarget. 7:18146–18158. 2016.PubMed/NCBI
|
27
|
Jiang Z, Chen X, Chen K, Sun L, Gao L,
Zhou C, Lei M, Duan W, Wang Z, Ma Q, et al: YAP Inhibition by
Resveratrol via Activation of AMPK Enhances the Sensitivity of
Pancreatic Cancer Cells to Gemcitabine. Nutrients. 8:82016.
View Article : Google Scholar
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-DeltaDeltaC(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, Duan
W, Sun Q, Xu J, Wu Z, et al: Hedgehog signaling regulates hypoxia
induced epithelial to mesenchymal transition and invasion in
pancreatic cancer cells via a ligand-independent manner. Mol
Cancer. 12:66. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W,
Bhat K, Wang F, Wu E and Wang Z: SDF-1/CXCR4 signaling induces
pancreatic cancer cell invasion and epithelial-mesenchymal
transition in vitro through non-canonical activation of Hedgehog
pathway. Cancer Lett. 322:169–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Segara D, Biankin AV, Kench JG, Langusch
CC, Dawson AC, Skalicky DA, Gotley DC, Coleman MJ, Sutherland RL
and Henshall SM: Expression of HOXB2, a retinoic acid signaling
target in pancreatic cancer and pancreatic intraepithelial
neoplasia. Clin Cancer Res. 11:3587–3596. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Iacobuzio-Donahue CA, Maitra A, Olsen M,
Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq
R, et al: Exploration of global gene expression patterns in
pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol.
162:1151–1162. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Koli K, Sutinen E, Rönty M, Rantakari P,
Fortino V, Pulkkinen V, Greco D, Sipilä P and Myllärniemi M:
Gremlin-1 overex-pression in mouse lung reduces silica-induced
lymphocyte recruitment - A link to idiopathic pulmonary fibrosis
through negative correlation with CXCL10 chemokine. PLoS One.
11:e01590102016. View Article : Google Scholar
|
34
|
Namkoong H, Shin SM, Kim HK, Ha SA, Cho
GW, Hur SY, Kim TE and Kim JW: The bone morphogenetic protein
antagonist Gremlin 1 is overexpressed in human cancers and
interacts with YWHAH protein. BMC Cancer. 6:74. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Karagiannis GS, Musrap N, Saraon P, Treacy
A, Schaeffer DF, Kirsch R, Riddell RH and Diamandis EP: Bone
morphogenetic protein antagonist gremlin-1 regulates colon cancer
progression. Biol Chem. 396:163–183. 2015. View Article : Google Scholar
|
36
|
Piccirillo SG, Reynolds BA, Zanetti N,
Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi
AL: Bone morphogenetic proteins inhibit the tumorigenic potential
of human brain tumour-initiating cells. Nature. 444:761–765. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Maciel TT, Melo RS, Schor N and Campos AH:
Gremlin promotes vascular smooth muscle cell proliferation and
migration. J Mol Cell Cardiol. 44:370–379. 2008. View Article : Google Scholar
|
38
|
Kim M, Yoon S, Lee S, Ha SA, Kim HK, Kim
JW and Chung J: Gremlin-1 induces BMP-independent tumor cell
proliferation, migration, and invasion. PLoS One. 7:e351002012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Goulley J, Dahl U, Baeza N, Mishina Y and
Edlund H: BMP4-BMPR1A signaling in β cells is required for and
augments glucose-stimulated insulin secretion. Cell Metab.
5:207–219. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Scott GJ, Ray MK, Ward T, McCann K,
Peddada S, Jiang FX and Mishina Y: Abnormal glucose metabolism in
heterozygous mutant mice for a type I receptor required for BMP
signaling. Genesis. 47:385–391. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Henley KD, Gooding KA, Economides AN and
Gannon M: Inactivation of the dual Bmp/Wnt inhibitor Sostdc1
enhances pancreatic islet function. Am J Physiol Endocrinol Metab.
303:E752–E761. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Eibl G, Cruz-Monserrate Z, Korc M, Petrov
MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart
PA, et al: Diabetes mellitus and obesity as risk factors for
pancreatic cancer. J Acad Nutr Diet. 118:555–567. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kleeff J, Costello E, Jackson R, Halloran
C, Greenhalf W, Ghaneh P, Lamb RF, Lerch MM, Mayerle J, Palmer D,
et al: The impact of diabetes mellitus on survival following
resection and adjuvant chemotherapy for pancreatic cancer. Br J
Cancer. 115:887–894. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hart PA, Law RJ, Frank RD, Bamlet WR,
Burch PA, Petersen GM, Rabe KG and Chari ST: Impact of diabetes
mellitus on clinical outcomes in patients undergoing surgical
resection for pancreatic cancer: A retrospective, cohort study. Am
J Gastroenterol. 109:1484–1492. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen K, Qian W, Jiang Z, Cheng L, Li J,
Sun L, Zhou C, Gao L, Lei M, Yan B, et al: Metformin suppresses
cancer initiation and progression in genetic mouse models of
pancreatic cancer. Mol Cancer. 16:1312017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Duan W, Chen K, Jiang Z, Chen X, Sun L, Li
J, Lei J, Xu Q, Ma J, Li X, et al: Desmoplasia suppression by
metformin-mediated AMPK activation inhibits pancreatic cancer
progression. Cancer Lett. 385:225–233. 2017. View Article : Google Scholar
|
47
|
Liu J, Zhong Y, Liu G, Zhang X, Xiao B,
Huang S, Liu H and He L: Role of Stat3 Signaling in Control of EMT
of Tubular Epithelial Cells During Renal Fibrosis. Cell Physiol
Biochem. 42:2552–2558. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Roxburgh SA, Murphy M, Pollock CA and
Brazil DP: Recapitulation of embryological programmes in renal
fibrosis–the importance of epithelial cell plasticity and
developmental genes. Nephron, Physiol. 103:139–148. 2006.
View Article : Google Scholar
|
49
|
Walsh DW, Roxburgh SA, McGettigan P,
Berthier CC, Higgins DG, Kretzler M, Cohen CD, Mezzano S, Brazil DP
and Martin F: Co-regulation of Gremlin and Notch signalling in
diabetic nephropathy. Biochim Biophys Acta. 1782:10–21. 2008.
View Article : Google Scholar
|
50
|
Dolan V, Murphy M, Sadlier D, Lappin D,
Doran P, Godson C, Martin F, O'Meara Y, Schmid H, Henger A, et al:
Expression of gremlin, a bone morphogenetic protein antagonist, in
human diabetic nephropathy. Am J Kidney Dis. 45:1034–1039. 2005.
View Article : Google Scholar : PubMed/NCBI
|
51
|
McKnight AJ, Patterson CC, Pettigrew KA,
Savage DA, Kilner J, Murphy M, Sadlier D and Maxwell AP; Warren
3/U.K. Genetics of Kidneys in Diabetes (GoKinD) Study Group: A
GREM1 gene variant associates with diabetic nephropathy. J Am Soc
Nephrol. 21:773–781. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ,
Wen X, Jeong S, Cho NY, Kim WH and Kang GH: Prognostic significance
of stromal GREM1 expression in colorectal cancer. Hum Pathol.
62:56–65. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Pelli A, Väyrynen JP, Klintrup K, Mäkelä
J, Mäkinen MJ, Tuomisto A and Karttunen TJ: Gremlin1 expression
associates with serrated pathway and favourable prognosis in
colorectal cancer. Histopathology. 69:831–838. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Guan Y, Cheng W, Zou C, Wang T, Cao Z and
Wu A: Gremlin1 promotes carcinogenesis of glioma in vitro. Clin Exp
Pharmacol Physiol. 44:244–256. 2017. View Article : Google Scholar
|
55
|
Kim HS, Shin MS, Cheon MS, Kim JW, Lee C,
Kim WH, Kim YS and Jang BG: GREM1 is expressed in the
cancer-associated myofibroblasts of basal cell carcinomas. PLoS
One. 12:e01745652017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Koikawa K, Ohuchida K, Takesue S, Ando Y,
Kibe S, Nakayama H, Endo S, Abe T, Okumura T, Horioka K, et al:
Pancreatic stellate cells reorganize matrix components and lead
pancreatic cancer invasion via the function of Endo180. Cancer
Lett. 412:143–154. 2018. View Article : Google Scholar
|
57
|
Quante M, Tu SP, Tomita H, Gonda T, Wang
SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone
marrow-derived myofibroblasts contribute to the mesenchymal stem
cell niche and promote tumor growth. Cancer Cell. 19:257–272. 2011.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe
T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, et al:
Bone-marrow-derived myofibroblasts contribute to the cancer-induced
stromal reaction. Biochem Biophys Res Commun. 309:232–240. 2003.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Marrache F, Pendyala S, Bhagat G, Betz KS,
Song Z and Wang TC: Role of bone marrow-derived cells in
experimental chronic pancreatitis. Gut. 57:1113–1120. 2008.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Scarlett CJ: Contribution of bone marrow
derived cells to the pancreatic tumor microenvironment. Front
Physiol. 4:56. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kosinski C, Li VS, Chan ASY, Zhang J, Ho
C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, et al: Gene
expression patterns of human colon tops and basal crypts and BMP
antagonists as intestinal stem cell niche factors. Proc Natl Acad
Sci USA. 104:15418–15423. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gordon KJ, Kirkbride KC, How T and Blobe
GC: Bone morpho-genetic proteins induce pancreatic cancer cell
invasiveness through a Smad1-dependent mechanism that involves
matrix metalloproteinase-2. Carcinogenesis. 30:238–248. 2009.
View Article : Google Scholar
|
63
|
Yin Y, Yang Y, Yang L, Yang Y, Li C, Liu X
and Qu Y: Overexpression of Gremlin promotes non-small cell lung
cancer progression. Tumour Biol. 37:2597–2602. 2016. View Article : Google Scholar
|
64
|
Wellbrock J, Sheikhzadeh S,
Oliveira-Ferrer L, Stamm H, Hillebrand M, Keyser B, Klokow M,
Vohwinkel G, Bonk V, Otto B, et al: Overexpression of Gremlin-1 in
patients with Loeys-Dietz syndrome: Implications on pathophysiology
and early disease detection. PLoS One. 9:e1047422014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Virtanen S, Alarmo EL, Sandström S, Ampuja
M and Kallioniemi A: Bone morphogenetic protein -4 and -5 in
pancreatic cancer--novel bidirectional players. Exp Cell Res.
317:2136–2146. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Hamada S, Satoh K, Hirota M, Kimura K,
Kanno A, Masamune A and Shimosegawa T: Bone morphogenetic protein 4
induces epithelial-mesenchymal transition through MSX2 induction on
pancreatic cancer cell line. J Cell Physiol. 213:768–774. 2007.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Kallioniemi A: Bone morphogenetic protein
4-a fascinating regulator of cancer cell behavior. Cancer Genet.
205:267–277. 2012. View Article : Google Scholar : PubMed/NCBI
|