1
|
Tsao AS, Scagliotti GV, Bunn PA Jr,
Carbone DP, Warren GW, Bai C, de Koning HJ, Yousaf-Khan AU,
McWilliams A, Tsao MS, et al: Scientific Advances in Lung Cancer
2015. J Thorac Oncol. 11:613–638. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hsiao SH, Chung CL, Chou YT, Lee HL, Lin
SE and Liu HE: Identification of subgroup patients with stage
IIIB/IV non-small cell lung cancer at higher risk for brain
metastases. Lung Cancer. 82:319–323. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ardizzoni A, Tiseo M, Boni L, Di Maio M,
Buffoni L, Belvedere O, Grossi F, D’Alessandro V, de Marinis F,
Barbera S, et al: Randomized phase III PITCAP trial and
meta-analysis of induction chemotherapy followed by thoracic
irradiation with or without concurrent taxane-based chemotherapy in
locally advanced NSCLC. Lung Cancer. 100:30–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao Z, Su Z, Zhang W, Luo M, Wang H and
Huang L: A randomized study comparing the effectiveness of
microwave ablation radioimmunotherapy and postoperative adjuvant
chemoradiation in the treatment of non-small cell lung cancer. J
BUON. 21:326–332. 2016.PubMed/NCBI
|
7
|
Hall RD, Le TM, Haggstrom DE and Gentzler
RD: Angiogenesis inhibition as a therapeutic strategy in non-small
cell lung cancer (NSCLC). Transl Lung Cancer Res. 4:515–523.
2015.PubMed/NCBI
|
8
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e3632004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tutar L, Tutar E, Özgür A and Tutar Y:
Therapeutic Targeting of microRNAs in Cancer: Future Perspectives.
Drug Dev Res. 76:382–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sethi S, Ali S, Sethi S and Sarkar FH:
MicroRNAs in personalized cancer therapy. Clin Genet. 86:68–73.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Monroig PC, Chen L, Zhang S and Calin GA:
Small molecule compounds targeting miRNAs for cancer therapy. Adv
Drug Deliv Rev. 81:104–116. 2015. View Article : Google Scholar
|
12
|
Kane NM, Thrasher AJ, Angelini GD and
Emanueli C: Concise review: MicroRNAs as modulators of stem cells
and angiogenesis. Stem Cells. 32:1059–1066. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vira D, Basak SK, Veena MS, Wang MB, Batra
RK and Srivatsan ES: Cancer stem cells, microRNAs, and therapeutic
strategies including natural products. Cancer Metastasis Rev.
31:733–751. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun X, Jiao X, Pestell TG, Fan C, Qin S,
Mirabelli E, Ren H and Pestell RG: MicroRNAs and cancer stem cells:
The sword and the shield. Oncogene. 33:4967–4977. 2014. View Article : Google Scholar
|
15
|
Liu Y, Li M, Zhang G and Pang Z:
MicroRNA-10b overexpression promotes non-small cell lung cancer
cell proliferation and invasion. Eur J Med Res. 18:412013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ni R, Huang Y and Wang J: miR-98 targets
ITGB3 to inhibit proliferation, migration, and invasion of
non-small-cell lung cancer. Onco Targets Ther. 8:2689–2697.
2015.PubMed/NCBI
|
19
|
Jiang P, Wu X, Wang X, Huang W and Feng Q:
NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin
sensitivity in lung cancer cells. Oncotarget. 7:43337–43351.
2016.PubMed/NCBI
|
20
|
Siragam V, Rutnam ZJ, Yang W, Fang L, Luo
L, Yang X, Li M, Deng Z, Qian J, Peng C, et al: MicroRNA miR-98
inhibits tumor angiogenesis and invasion by targeting activin
receptor-like kinase-4 and matrix metalloproteinase-11. Oncotarget.
3:1370–1385. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jinushi T, Shibayama Y, Kinoshita I,
Oizumi S, Jinushi M, Aota T, Takahashi T, Horita S, Dosaka-Akita H
and Iseki K: Low expression levels of microRNA-124-5p correlated
with poor prognosis in colorectal cancer via targeting of SMC4.
Cancer Med. 3:1544–1552. 2014. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Yang G, Zhang X and Shi J: MiR-98 inhibits
cell proliferation and invasion of non-small cell carcinoma lung
cancer by targeting PAK1. Int J Clin Exp Med. 8:20135–20145.
2015.
|
23
|
Chen X, Xu Y, Liao X, Liao R, Zhang L, Niu
K, Li T, Li D, Chen Z, Duan Y, et al: Plasma miRNAs in predicting
radiosensitivity in non-small cell lung cancer. Tumour Biol.
37:11927–11936. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou H, Huang Z, Chen X and Chen S: miR-98
inhibits expression of TWIST to prevent progression of non-small
cell lung cancers. Biomed Pharmacother. 89:1453–1461. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Pasche B, Pennison MJ, Jimenez H and Wang
M: TGFBR1 and cancer susceptibility. Trans Am Clin Climatol Assoc.
125:300–312. 2014.PubMed/NCBI
|
26
|
Wang H, Zhang Q, Wang B, Wu W, Wei J, Li P
and Huang R: miR-22 regulates C2C12 myoblast proliferation and
differentiation by targeting TGFBR1. Eur J Cell Biol. 97:257–268.
2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu F, Chen B, Fan X, Li G, Dong P and
Zheng J: Epigenetically-Regulated MicroRNA-9-5p Suppresses the
Activation of Hepatic Stellate Cells via TGFBR1 and TGFBR2. Cell
Physiol Biochem. 43:2242–2252. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cheng R, Dang R, Zhou Y, Ding M and Hua H:
MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen
production of cardiac fibroblasts by targeting TGFBR1. Hum Cell.
30:192–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rosman DS, Phukan S, Huang CC and Pasche
B: TGFBR1*6A enhances the migration and invasion of MCF-7 breast
cancer cells through RhoA activation. Cancer Res. 68:1319–1328.
2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhou R, Huang Y, Cheng B, Wang Y and Xiong
B: TGFBR1*6A is a potential modifier of migration and invasion in
colorectal cancer cells. Oncol Lett. 15:3971–3976. 2018.PubMed/NCBI
|
31
|
Mody HR, Hung SW, Pathak RK, Griffin J,
Cruz-Monserrate Z and Govindarajan R: miR-202 diminishes TGFβ
receptors and attenuates TGFβ1-Induced EMT in pancreatic cancer.
Mol Cancer Res. 15:1029–1039. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Lee YS and Dutta A: MicroRNAs in cancer.
Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar :
|
34
|
Berindan-Neagoe I, Monroig PC, Pasculli B
and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis
and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Akhurst RJ and Hata A: Targeting the TGFβ
signalling pathway in disease. Nat Rev Drug Discov. 11:790–811.
2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bierie B and Moses HL: Tumour
microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer.
Nat Rev Cancer. 6:506–520. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sethi N, Dai X, Winter CG and Kang Y:
Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast
cancer by engaging notch signaling in bone cells. Cancer Cell.
19:192–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kang Y, He W, Tulley S, Gupta GP,
Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL and
Massagué J: Breast cancer bone metastasis mediated by the Smad
tumor suppressor pathway. Proc Natl Acad Sci USA. 102:13909–13914.
2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Attili I, Karachaliou N, Bonanno L,
Berenguer J, Bracht J, Codony-Servat J, Codony-Servat C, Ito M and
Rosell R: STAT3 as a potential immunotherapy biomarker in
oncogene-addicted non-small cell lung cancer. Ther Adv Med Oncol.
Apr 2–2018.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
40
|
Reis H, Metzenmacher M, Goetz M, Savvidou
N, Darwiche K, Aigner C, Herold T, Eberhardt WE, Skiba C, Hense J,
et al: MET expression in advanced non-small-cell lung cancer:
Effect on clinical outcomes of chemotherapy, targeted therapy, and
immunotherapy. Clin Lung Cancer. 19:e441–e463. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang H, Yan L, Sun K, Sun X, Zhang X, Cai
K and Song T: LncRNA BCAR4 increases viability, invasion and
migration non-small cell lung cancer cells by targeting
glioma-associated oncogene 2 (GLI2). Oncol Res. Apr 3–2018.Epub
ahead of print. View Article : Google Scholar
|
42
|
Ambros V: MicroRNA pathways in flies and
worms: Growth, death, fat, stress, and timing. Cell. 113:673–676.
2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu W, Xiao P, Wu H, Wang L, Kong D and Yu
F: MicroRNA-98 plays a suppressive role in non-small cell lung
cancer through inhibition of SALL4 protein expression. Oncol Res.
25:975–988. 2017. View Article : Google Scholar
|
44
|
Wang MJ, Zhang H, Li J and Zhao HD:
microRNA-98 inhibits the proliferation, invasion, migration and
promotes apoptosis of breast cancer cells by binding to HMGA2.
Biosci Rep. 38:BSR201805712018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cai C, Huo Q, Wang X, Chen B and Yang Q:
SNHG16 contributes to breast cancer cell migration by competitively
binding miR-98 with E2F5. Biochem Biophys Res Commun. 485:272–278.
2017. View Article : Google Scholar : PubMed/NCBI
|