1
|
Raimondi S, Lowenfels AB, Morselli-Labate
AM, Maisonneuve P and Pezzilli R: Pancreatic cancer in chronic
pancreatitis; aetiology, incidence, and early detection. Best Pract
Res Clin Gastroenterol. 24:349–358. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
No authors listed. The World Cancer Report
- the major findings. Cent Eur J Public Health. 11:177–179.
2003.
|
3
|
GBD 2016 Causes of Death Collaborators:
Global, regional, and national age-sex specific mortality for 264
causes of death, 1980–2016: A systematic analysis for the Global
Burden of Disease Study 2016. Lancet. 390:1151–1210. 2017.
View Article : Google Scholar
|
4
|
Kleeff J, Michalski C, Friess H and
Büchler MW: Pancreatic cancer: From bench to 5-year survival.
Pancreas. 33:111–118. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schiff E and Ben-Arye E: Complementary
therapies for side effects of chemotherapy and radiotherapy in the
upper gastrointestinal system. Eur J Integr Med. 3:11–16. 2011.
View Article : Google Scholar
|
6
|
Gupta AK and Gupta M: Synthesis and
surface engineering of iron oxide nanoparticles for biomedical
applications. Biomaterials. 26:3995–4021. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gan ZJJ: Preparation of magnetic
monodisperse nanoparticles and biopolymer assembly on the magnetic
carriers. Huaxue Jinzhan. 17:978–986. 2005.
|
8
|
Gallo JM, Hafeli U, Lübbe AS, et al:
Preclinical experiences with magnetic drug targeting: tolerance and
efficacy. Cancer Res. 56:4694–4701. 1996.
Clinical experiences with magnetic drug
targeting: a phase I study with 4′-epidoxorubicin in 14 patients
with advanced solid tumors. Cancer Res. 56:4686–4693. 1996.
Cancer Res. 57:3063–3065. 1997.
|
9
|
Lübbe AS, Bergemann C, Riess H, Schriever
F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F,
Gürtler R, et al: Clinical experiences with magnetic drug
targeting: A phase I study with 4′-epidoxorubicin in 14 patients
with advanced solid tumors. Cancer Res. 56:4686–4693. 1996.
|
10
|
Sabaté R, Barnadas-Rodríguez R,
Callejas-Fernández J, Hidalgo-Alvarez R and Estelrich J:
Preparation and characterization of extruded magnetoliposomes. Int
J Pharm. 347:156–162. 2008. View Article : Google Scholar
|
11
|
Fricker J: Drugs with a magnetic
attraction to tumours. Drug Discov Today. 6:387–389. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kohler N, Sun C, Wang J and Zhang M:
Methotrexate-modified superparamagnetic nanoparticles and their
intracellular uptake into human cancer cells. Langmuir.
21:8858–8864. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cinteza LO, Ohulchanskyy TY, Sahoo Y,
Bergey EJ, Pandey RK and Prasad PN: Diacyllipid micelle-based
nanocarrier for magnetically guided delivery of drugs in
photodynamic therapy. Mol Pharm. 3:415–423. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Novikov VV, Ponomarev VO, Novikov GV,
Kuvichkin VV, Iablokova EV and Fesenko EE: Effects and molecular
mechanisms of the biological action of weak and extremely weak
magnetic fields. Biofizika. 55:565–572. 2010.
|
15
|
Sato K, Watanabe Y, Horiuchi A, Yukumi S,
Doi T, Yoshida M, Yamamoto Y, Maehara T, Naohara T and Kawachi K:
Novel tumor-ablation device for liver tumors utilizing heat energy
generated under an alternating magnetic field. J Gastroenterol
Hepatol. 23:1105–1111. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chertok B, David AE and Yang VC: Brain
tumor targeting of magnetic nanoparticles for potential drug
delivery: effect of administration route and magnetic field
topography. J Control Release. 155:393–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lu ZR, Ye F and Vaidya A: Polymer
platforms for drug delivery and biomedical imaging. J Control
Release. 122:269–277. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gan KH, Lin CN and Won SJ: Cytotoxic
principles and their derivatives of Formosan Solanum plants. J Nat
Prod. 56:15–21. 1993. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alzérreca A and Hart G: Molluscicidal
steroid glycoalkaloids possessing stereoisomeric spirosolane
structures. Toxicol Lett. 12:151–155. 1982. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xie X, Zhu H, Yang H, Huang W, Wu Y, Wang
Y, Luo Y, Wang D and Shao G: Solamargine triggers hepatoma cell
death through apoptosis. Oncol Lett. 10:168–174. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kuo KW, Hsu SH, Li YP, Lin WL, Liu LF,
Chang LC, Lin CC, Lin CN and Sheu HM: Anticancer activity
evaluation of the solanum glycoalkaloid solamargine. Triggering
apoptosis in human hepatoma cells. Biochem Pharmacol. 60:1865–1873.
2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liang CH, Shiu LY, Chang LC, Sheu HM and
Kuo KW: Solamargine upregulation of Fas, downregulation of HER2,
and enhancement of cytotoxicity using epirubicin in NSCLC cells.
Mol Nutr Food Res. 51:999–1005. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang X, Zhang X, Ma Y, Huang Y, Wang Y and
Chen Y: Superparamagnetic graphene
oxide-Fe3O4 nanoparticles hybrid for
controlled targeted drug carriers. J Mater Chem. 19:2710–2714.
2009. View Article : Google Scholar
|
24
|
Liang C-C, Park AY and Guan J-L: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
26
|
van Rij CM, Frielink C, Goldenberg DM,
Sharkey RM, Lütje S, McBride WJ, Oyen WJ and Boerman OC:
Pretargeted radioim-munotherapy of prostate cancer with an
anti-TROP-2xanti-HSG bispecific antibody and a (177)Lu-labeled
peptide. Cancer Biother Radiopharm. 29:323–329. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liao MY, Kuo MY, Lu TY, Wang YP and Wu HC:
Generation of an anti-EpCAM antibody and epigenetic regulation of
EpCAM in colorectal cancer. Int J Oncol. 46:1788–1800. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wanebo HJ, Glicksman AS, Vezeridis MP,
Clark J, Tibbetts L, Koness RJ and Levy A: Preoperative
chemotherapy, radiotherapy, and surgical resection of locally
advanced pancreatic cancer. Arch Surg. 135:81–87; discussion 88.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kalra AV and Campbell RB: Development of
5-FU and doxorubicin-loaded cationic liposomes against human
pancreatic cancer: Implications for tumor vascular targeting. Pharm
Res. 23:2809–2817. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang L, Chang CJ, Bacus SS and Hung M-C:
Suppressed transformation and induced differentiation of
HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res.
55:3890–3896. 1995.PubMed/NCBI
|
31
|
Shiu LY, Chang LC, Liang CH, Huang YS,
Sheu HM and Kuo KW: Solamargine induces apoptosis and sensitizes
breast cancer cells to cisplatin. Food Chem Toxicol. 45:2155–2164.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC
and Kuo KW: Action of solamargine on human lung cancer cells -
enhancement of the susceptibility of cancer cells to TNFs. FEBS
Lett. 577:67–74. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fisher DE: Apoptosis in cancer therapy:
Crossing the threshold. Cell. 78:539–542. 1994. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ho A and Dowdy SF: Regulation of
G1 cell-cycle progression by oncogenes and tumor
suppressor genes. Curr Opin Genet Dev. 12:47–52. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schimmer AD, Welsh K, Pinilla C, Wang Z,
Krajewska M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL,
Bailly-Maitre B, et al: Small-molecule antagonists of apoptosis
suppressor XIAP exhibit broad antitumor activity. Cancer Cell.
5:25–35. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li F, Ambrosini G, Chu EY, Plescia J,
Tognin S, Marchisio PC and Altieri DC: Control of apoptosis and
mitotic spindle checkpoint by survivin. Nature. 396:580–584. 1998.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Coates PJ, Hales SA and Hall PA: The
association between cell proliferation and apoptosis: Studies using
the cell cycle-associated proteins Ki67 and DNA polymerase alpha. J
Pathol. 178:71–77. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ouhtit A, Gaur RL, Abdraboh M, Ireland SK,
Rao PN, Raj SG, Al-Riyami H, Shanmuganathan S, Gupta I, Murthy SN,
et al: Simultaneous inhibition of cell-cycle, proliferation,
survival, metastatic pathways and induction of apoptosis in breast
cancer cells by a phytochemical super-cocktail: Genes that underpin
its mode of action. J Cancer. 4:703–715. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shirali S, Aghaei M, Shabani M, Fathi M,
Sohrabi M and Moeinifard M: Adenosine induces cell cycle arrest and
apoptosis via cyclinD1/Cdk4 and Bcl-2/Bax pathways in human ovarian
cancer cell line OVCAR-3. Tumour Biol. 34:1085–1095. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Pàez-Ribes M, Allen E, Hudock J, Takeda T,
Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D and Casanovas O:
Antiangiogenic therapy elicits malignant progression of tumors to
increased local invasion and distant metastasis. Cancer Cell.
15:220–231. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fang W, Li H, Kong L, Niu G, Gao Q, Zhou
K, Zheng J and Wu B: Role of matrix metalloproteinases (MMPs) in
tumor invasion and metastasis: Serial studies on MMPs and TIMPs.
Beijing Da Xue Xue Bao Yi Xue Ban. 35:441–443. 2003.In Chinese.
PubMed/NCBI
|
42
|
Chetty C, Bhoopathi P, Joseph P,
Chittivelu S, Rao JS and Lakka S: Adenovirus-mediated small
interfering RNA against matrix metalloproteinase-2 suppresses tumor
growth and lung metastasis in mice. Mol Cancer Ther. 5:2289–2299.
2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Luca M, Huang S, Gershenwald JE, Singh RK,
Reich R and Bar-Eli M: Expression of interleukin-8 by human
melanoma cells up-regulates MMP-2 activity and increases tumor
growth and metastasis. Am J Pathol. 151:1105–1113. 1997.PubMed/NCBI
|
44
|
Hay N: The Akt-mTOR tango and its
relevance to cancer. Cancer Cell. 8:179–183. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Altomare DA, Wang HQ, Skele KL, De Rienzo
A, Klein-Szanto AJ, Godwin AK and Testa JR: AKT and mTOR
phosphorylation is frequently detected in ovarian cancer and can be
targeted to disrupt ovarian tumor cell growth. Oncogene.
23:5853–5857. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Uesugi A, Kozaki K, Tsuruta T, Furuta M,
Morita K, Imoto I, Omura K and Inazawa J: The tumor suppressive
microRNA miR-218 targets the mTOR component Rictor and inhibits AKT
phosphorylation in oral cancer. Cancer Res. 71:5765–5778. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kitano H, Chung JY, Ylaya K, Conway C,
Takikita M, Fukuoka J, Doki Y, Hanaoka J and Hewitt SM: Profiling
of phospho-AKT, phospho-mTOR, phospho-MAPK and EGFR in non-small
cell lung cancer. J Histochem Cytochem. 62:335–346. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Morgensztern D and McLeod HL:
PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer
Drugs. 16:797–803. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Takahashi M and Kohda H: Diagnostic
utility of magnetic resonance imaging in malignant melanoma. J Am
Acad Dermatol. 27:51–54. 1992. View Article : Google Scholar : PubMed/NCBI
|