1
|
Dellovade T, Romer JT, Curran T and Rubin
LL: The hedgehog pathway and neurological disorders. Annu Rev
Neurosci. 29:539–563. 2006. View Article : Google Scholar
|
2
|
Ryan KE and Chiang C: Hedgehog secretion
and signal transduction in vertebrates. J Biol Chem.
287:17905–17913. 2012. View Article : Google Scholar
|
3
|
Hui CC and Angers S: Gli proteins in
development and disease. Annu Rev Cell Dev Biol. 27:513–537. 2011.
View Article : Google Scholar
|
4
|
Northcott PA, Jones DT, Kool M, Robinson
GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P,
Taylor MD, et al: Medulloblastomics: The end of the beginning. Nat
Rev Cancer. 12:818–834. 2012. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Northcott PA, Korshunov A, Pfister SM and
Taylor MD: The clinical implications of medulloblastoma subgroups.
Nat Rev Neurol. 8:340–351. 2012. View Article : Google Scholar
|
6
|
Di Magno L, Manzi D, D’Amico D, Coni S,
Macone A, Infante P, Di Marcotullio L, De Smaele E, Ferretti E,
Screpanti I, et al: Druggable glycolytic requirement for
Hedgehog-dependent neuronal and medulloblastoma growth. Cell Cycle.
13:3404–3413. 2014. View Article : Google Scholar
|
7
|
Chen Y and Jiang J: Decoding the
phosphorylation code in Hedgehog signal transduction. Cell Res.
23:186–200. 2013. View Article : Google Scholar
|
8
|
Gulino A, Di Marcotullio L, Canettieri G,
De Smaele E and Screpanti I: Hedgehog/Gli control by
ubiquitination/acetylation interplay. Vitam Horm. 88:211–227. 2012.
View Article : Google Scholar
|
9
|
Canettieri G, Di Marcotullio L, Greco A,
Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E,
Ferretti E, Miele E, et al: Histone deacetylase and
Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog
signalling through Gli acetylation. Nat Cell Biol. 12:132–142.
2010. View
Article : Google Scholar
|
10
|
Coni S, Antonucci L, D’Amico D, Di Magno
L, Infante P, De Smaele E, Giannini G, Di Marcotullio L, Screpanti
I, Gulino A, et al: Gli2 acetylation at lysine 757 regulates
hedgehog-dependent transcriptional output by preventing its
promoter occupancy. PLoS One. 8:e657182013. View Article : Google Scholar
|
11
|
Liu H, Yan S, Ding J, Yu TT and Cheng SY:
DeSUMOylation of Gli1 by SENP1 attenuates sonic Hedgehog signaling.
Mol Cell Biol. 37:372017. View Article : Google Scholar
|
12
|
Di Magno L, Coni S, Di Marcotullio L and
Canettieri G: Digging a hole under Hedgehog: Downstream inhibition
as an emerging anticancer strategy. Biochim Biophys Acta.
1856.62–72. 2015.
|
13
|
Coni S, Mancuso AB, Di Magno L, Sdruscia
G, Manni S, Serrao SM, Rotili D, Spiombi E, Bufalieri F, Petroni M,
et al: Selective targeting of HDAC1/2 elicits anticancer effects
through Gli1 acetylation in preclinical models of SHH
Medulloblastoma. Sci Rep. 7:440792017. View Article : Google Scholar
|
14
|
Di Magno L, Basile A, Coni S, Manni S,
Sdruscia G, D’Amico D, Antonucci L, Infante P, De Smaele E, Cucchi
D, et al: The energy sensor AMPK regulates Hedgehog signaling in
human cells through a unique Gli1 metabolic checkpoint. Oncotarget.
7:9538–9549. 2016. View Article : Google Scholar :
|
15
|
Xu Q, Liu X, Zheng X, Yao Y, Wang M and
Liu Q: The transcriptional activity of Gli1 is negatively regulated
by AMPK through Hedgehog partial agonism in hepatocellular
carcinoma. Int J Mol Med. 34:733–741. 2014. View Article : Google Scholar
|
16
|
Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q,
Liao C, Zou J and Song H: MEKK2 and MEKK3 suppress Hedgehog
pathway-dependent medulloblastoma by inhibiting GLI1 function.
Oncogene. 37:3864–3878. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Uhlik MT, Abell AN, Cuevas BD, Nakamura K
and Johnson GL: Wiring diagrams of MAPK regulation by MEKK1, 2, and
3. Biochem Cell Biol. 82:658–663. 2004. View Article : Google Scholar
|
18
|
Hutchin ME, Kariapper MS, Grachtchouk M,
Wang A, Wei L, Cummings D, Liu J, Michael LE, Glick A and Dlugosz
AA: Sustained Hedgehog signaling is required for basal cell
carcinoma proliferation and survival: Conditional skin
tumorigenesis recapitulates the hair growth cycle. Genes Dev.
19:214–223. 2005. View Article : Google Scholar
|
19
|
Hayden Gephart MG, Su YS, Bandara S, Tsai
FC, Hong J, Conley N, Rayburn H, Milenkovic L, Meyer T and Scott
MP: Neuropilin-2 contributes to tumorigenicity in a mouse model of
Hedgehog pathway medulloblastoma. J Neurooncol. 115:161–168. 2013.
View Article : Google Scholar
|
20
|
Tang Y, Gholamin S, Schubert S, Willardson
MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N,
et al: Epigenetic targeting of Hedgehog pathway transcriptional
output through BET bromodomain inhibition. Nat Med. 20:732–740.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
D’Amico D, Antonucci L, Di Magno L, Coni
S, Sdruscia G, Macone A, Miele E, Infante P, Di Marcotullio L, De
Smaele E, et al: Non-canonical Hedgehog/AMPK-Mediated Control of
Polyamine Metabolism Supports Neuronal and Medulloblastoma Cell
Growth. Dev Cell. 35:21–35. 2015. View Article : Google Scholar
|
22
|
Vargas Romero P, Cialfi S, Palermo R, De
Blasio C, Checquolo S, Bellavia D, Chiaretti S, Foà R, Amadori A,
Gulino A, et al: The deregulated expression of miR-125b in acute
myeloid leukemia is dependent on the transcription factor C/EBPα.
Leukemia. 29:2442–2445. 2015. View Article : Google Scholar
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Screaton RA, Conkright MD, Katoh Y, Best
JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR III,
Takemori H, et al: The CREB coactivator TORC2 functions as a
calcium- and cAMP-sensitive coincidence detector. Cell. 119:61–74.
2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yujiri T, Fanger GR, Garrington TP,
Schlesinger TK, Gibson S and Johnson GL: MEK kinase 1 (MEKK1)
transduces c-Jun NH2-terminal kinase activation in response to
changes in the microtubule cytoskeleton. J Biol Chem.
274:12605–12610. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Briscoe J and Thérond PP: The mechanisms
of Hedgehog signalling and its roles in development and disease.
Nat Rev Mol Cell Biol. 14:416–429. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Garrington TP and Johnson GL: Organization
and regulation of mitogen-activated protein kinase signaling
pathways. Curr Opin Cell Biol. 11:211–218. 1999. View Article : Google Scholar
|
28
|
Yujiri T, Sather S, Fanger GR and Johnson
GL: Role of MEKK1 in cell survival and activation of JNK and ERK
pathways defined by targeted gene disruption. Science.
282:1911–1914. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xue Z, Vis DJ, Bruna A, Sustic T, van
Wageningen S, Batra AS, Rueda OM, Bosdriesz E, Caldas C, Wessels
LFA, et al: MAP3K1 and MAP2K4 mutations are associated with
sensitivity to MEK inhibitors in multiple cancer models. Cell Res.
28:719–729. 2018. View Article : Google Scholar
|
30
|
Michaut M, Chin SF, Majewski I, Severson
TM, Bismeijer T, de Koning L, Peeters JK, Schouten PC, Rueda OM,
Bosma AJ, et al: Integration of genomic, transcriptomic and
proteomic data identifies two biologically distinct subtypes of
invasive lobular breast cancer. Sci Rep. 6:185172016. View Article : Google Scholar :
|
31
|
Asaoka Y, Kanai F, Ichimura T, Tateishi K,
Tanaka Y, Ohta M, Seto M, Tada M, Ijichi H, Ikenoue T, et al:
Identification of a suppressive mechanism for Hedgehog signaling
through a novel interaction of Gli with 14-3-3. J Biol Chem.
285:4185–4194. 2010. View Article : Google Scholar :
|
32
|
Xia Y, Wang J, Xu S, Johnson GL, Hunter T
and Lu Z: MEKK1 mediates the ubiquitination and degradation of
c-Jun in response to osmotic stress. Mol Cell Biol. 27:510–517.
2007. View Article : Google Scholar
|