From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review)
- Authors:
- Volker Schirrmacher
-
Affiliations: Immunological and Oncological Center Cologne (IOZK), D-50674 Cologne, Germany - Published online on: December 10, 2018 https://doi.org/10.3892/ijo.2018.4661
- Pages: 407-419
-
Copyright: © Schirrmacher . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Fisher B and Wolmark N: The current status of systemic adjuvant therapy in the management of primary breast cancer. Surg Clin North Am. 61:1347–1360. 1981. View Article : Google Scholar | |
Mukherjee S: The Emperor of All Maladies: A Biography of Cancer. Scribner, a Division of Simon and Schuster Inc.; New York: 2010 | |
Schirrmacher V: Quo Vadis Cancer Therapy? Fascinating discoveries of the last 60 years. Lambert Academic Publishing; pp. 1–353. 2017 | |
Koeppen BM and Stanton BA: Berne and Levy Physiology. 7th edition. Elsevier; Amsterdam: pp. 8802018 | |
Seeber S and Schütte J: Therapiekonzepte Onkologie. Springer-Verlag; Berlin, Heidelberg: 1993, View Article : Google Scholar | |
Morgan G, Ward R and Barton M: The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin Oncol (R Coll Radiol). 16:549–560. 2004. View Article : Google Scholar | |
Steward BW and Wild CW: World Cancer Report. pp. 2014IARC Press; Lyon: 2014 | |
American Cancer Society: Cancer Facts and Figures 2018. American Cancer Society, Inc.; Atlanta, GA: 2018 | |
Niraula S, Seruga B, Ocana A, Shao T, Goldstein R, Tannock IF and Amir E: The price we pay for progress A meta-analysis of harms of newly approved anticancer drugs. J Clin Oncol. 30:3012–3019. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niraula S, Amir E, Vera-Badillo F, Seruga B, Ocana A and Tannock IF: Risk of incremental toxicities and associated costs of new anticancer drugs: A meta-analysis. J Clin Oncol. 32:3634–3642. 2014. View Article : Google Scholar | |
Barnes TA, Amir E, Templeton AJ, Gomez-Garcia S, Navarro B, Seruga B and Ocana A: Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat Rev. 56:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reid E, Suneja G, Ambinder RF, Ard K, Baiocchi R, Barta SK, Carchman E, Cohen A, Gupta N, Johung KL, et al: Cancer in people living with HIV, version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 16:986–1017. 2018. View Article : Google Scholar | |
Gutierrez-Dalmau A and Campistol JM: Immunosuppressive therapy and malignancy in organ transplant recipients: A systematic review. Drugs. 67:1167–1198. 2007. View Article : Google Scholar | |
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 348:203–213. 2003. View Article : Google Scholar | |
Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P and Cascinelli N: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 77:1303–1310. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lipponen PK, Eskelinen MJ, Jauhiainen K, Harju E and Terho R: Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer. Eur J Cancer. 29A:69–75. 1992.PubMed/NCBI | |
Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H and Ohtani H: CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58:3491–3494. 1998. | |
Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V and Beckhove P: The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res. 66:8258–8265. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V and Umansky V: Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med. 7:452–458. 2001. View Article : Google Scholar : PubMed/NCBI | |
Böhle A and Brandau S: Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol. 170:964–969. 2003. View Article : Google Scholar | |
Khong HT and Restifo NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar | |
Teng MW, Galon J, Fridman WH and Smyth MJ: From mice to humans: Developments in cancer immunoediting. J Clin Invest. 125:3338–3346. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan S, et al: Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 173:1755–1769. e222018. View Article : Google Scholar | |
Bäumler E and Ehrlich Paul: Forscher für das Leben. Bastei-Lübbe-Taschenbuch. 61:1631989. | |
Pauling L and Delbrück M: The nature of the intermolecular forces operative in biological processes. Science. 92:77–79. 1940. View Article : Google Scholar | |
Rudolph MG, Stanfield RL and Wilson IA: How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 24:419–466. 2006. View Article : Google Scholar | |
Manz BN, Jackson BL, Petit RS, Dustin ML and Groves J: T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc Natl Acad Sci USA. 108:9089–9094. 2011. View Article : Google Scholar | |
Reinherz EL: αβ TCR-mediated recognition: Relevance to tumor-antigen discovery and cancer immunotherapy. Cancer Immunol Res. 3:305–312. 2015. View Article : Google Scholar | |
Crespo J, Sun H, Welling TH, Tian Z and Zou W: T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 25:214–221. 2013. View Article : Google Scholar | |
Boissonnas A, Fetler L, Zeelenberg IS, Hugues S and Amigorena S: In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med. 204:345–356. 2007. View Article : Google Scholar : PubMed/NCBI | |
Otto L, Zelinskyy G, Schuster M, Dittmer U and Gunzer M: Imaging of cytotoxic antiviral immunity while considering the 3R principle of animal research. J Mol Med (Berl). 96:349–360. 2018. View Article : Google Scholar | |
Vasaturo A, Di Blasio S, Peeters DG, de Koning CC, de Vries JM, Figdor CG and Hato SV: Clinical implications of co-inhibitory molecule expression in the tumor microenvironment for DC vaccination: A game of stop and go. Front Immunol. 4:4172013. View Article : Google Scholar : | |
Teng MW, Ngiow SF, Ribas A and Smyth MJ: Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lindenmann J: Viral oncolysis with host survival. Proc Soc Exp Biol Med. 113:85–91. 1963. View Article : Google Scholar : PubMed/NCBI | |
Cassel WA and Garrett RE: Tumor immunity after viral oncolysis. J Bacteriol. 92:7921966. | |
Heicappell R, Schirrmacher V, von Hoegen P, Ahlert T and Appelhans B: Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects. Int J Cancer. 37:569–577. 1986. View Article : Google Scholar | |
Ertel C, Millar NS, Emmerson PT, Schirrmacher V and von Hoegen P: Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. Eur J Immunol. 23:2592–2596. 1993. View Article : Google Scholar | |
Schirrmacher V, Haas C, Bonifer R and Ertel C: Virus potentiation of tumor vaccine T-cell stimulatory capacity requires cell surface binding but not infection. Clin Cancer Res. 3:1135–1148. 1997. | |
Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M and Schirrmacher V: Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA. 91:7430–7434. 1994. View Article : Google Scholar : PubMed/NCBI | |
Müller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V and Khazaie K: EblacZ tumor dormancy in bone marrow and lymph nodes: Active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58:5439–5446. 1998. | |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gires O and Seliger B: Tumor-Associated Antigens. Wiley-Blackwell; Hoboken, NJ: 2009 | |
Tokuyasu TA and Huang JD: A primer on the recent developments in cancer immunotherapy, with a focus on neoantigen vaccines. J Cancer Metastasis Treat. 4:2–24. 2018. View Article : Google Scholar | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar | |
Flavahan WA, Gaskell E and Bernstein BE: Epigenetic plasticity and the hallmarks of cancer. Science. 357:23802017. View Article : Google Scholar | |
Coulie PG, Lehmann F, Lethé B, Herman J, Lurquin C, Andrawiss M and Boon T: A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA. 92:7976–7980. 1995. View Article : Google Scholar : PubMed/NCBI | |
Derbinski J and Kyewski B: How thymic antigen presenting cells sample the body’s self-antigens. Curr Opin Immunol. 22:592–600. 2010. View Article : Google Scholar | |
Kyewski B and Peterson P: Aire, master of many trades. Cell. 140:24–26. 2010. View Article : Google Scholar | |
Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, Träger U, Hofer AC, Kägebein D, Wang Q, Frauhammer F, et al: Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat Immunol. 18:1160–1172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sallusto F, Geginat J and Lanzavecchia A: Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004. View Article : Google Scholar | |
Di Rosa F and Pabst R: The bone marrow: A nest for migratory memory T cells. Trends Immunol. 26:360–366. 2005. View Article : Google Scholar : PubMed/NCBI | |
Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, Collins N, Dzutsev A, Shaik J, Morais da Fonseca D, Harrison OJ, Tamoutounour S, Byrd AL, et al: White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity. 47:1154–1168.e6. 2017. View Article : Google Scholar | |
Durek P, Nordström K, Gasparoni G, Salhab A, Kressler C, de Almeida M, Bassler K, Ulas T, Schmidt F, Xiong J, et al: DEEP Consortium: Epigenomic profiling of human CD4+ T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity. 45:1148–1161. 2016. View Article : Google Scholar | |
Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al: A human memory T cell subset with stem cell-like properties. Nat Med. 17:1290–1297. 2011. View Article : Google Scholar | |
Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C and Mathis D: Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci USA. 103:3304–3309. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gattinoni L, Speiser DE, Lichterfeld M and Bonini C: T memory stem cells in health and disease. Nat Med. 23:18–27. 2017. View Article : Google Scholar : PubMed/NCBI | |
Akondy RS, Fitch M, Edupuganti S, Yang S, Kissick HT, Li KW, Youngblood BA, Abdelsamed HA, McGuire DJ, Cohen KW, et al: Origin and differentiation of human memory CD8 T cells after vaccination. Nature. 552:362–367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 369:122–133. 2013. View Article : Google Scholar | |
Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, et al POPLAR Study Group: Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 387:1837–1846. 2016. View Article : Google Scholar | |
Allison JP: Checkpoints. Cell. 162:1202–1205. 2015. View Article : Google Scholar | |
Oiseth SJ and Aziz MS: Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 3:250–261. 2017. View Article : Google Scholar | |
Chamoto K, Al-Habsi M and Honjo T: Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol. 410:75–97. 2017.PubMed/NCBI | |
Kumar P, Bhattacharya P and Prabhakar BS: A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. Aug 30–2018.Epub ahead of print. View Article : Google Scholar | |
Schirrmacher V, Beckhove P, Krüger A, Rocha M, Umansky V, Fichtner K, Hull W, Zangemeisterwittke U, Griesbach A, Jurianz K, et al: Effective immune rejection of advanced metastasized cancer. Int J Oncol. 6:505–521. 1995.PubMed/NCBI | |
Schirrmacher V, Beckhove P, Choi C, Griesbach A and Mahnke Y: Tumor-immune memory T cells from the bone marrow exert GvL without GvH reactivity in advanced metastasized cancer. Int J Oncol. 27:1141–1149. 2005.PubMed/NCBI | |
Schirrmacher V: Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: Lessons from GvL studies in animals. Cancer Immunol Immunother. 63:535–543. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hämmerling GJ, Kyewski B, Hamann A, Umansky V, et al: Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med. 9:1151–1157. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V and Beckhove P: T-cell priming in bone marrow: The potential for long-lasting protective anti-tumor immunity. Trends Mol Med. 9:526–534. 2003. View Article : Google Scholar | |
Newick K, O’Brien S, Moon E and Albelda SM: CAR T cell therapy of solid tumors. Annu Rev Med. 68:139–152. 2017. View Article : Google Scholar | |
Chmielewski M, Hombach AA and Abken H: Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 257:83–90. 2014. View Article : Google Scholar | |
Ahlert T, Sauerbrei W, Bastert G, Ruhland S, Bartik B, Simiantonaki N, Schumacher J, Häcker B, Schumacher M and Schirrmacher V: Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. J Clin Oncol. 15:1354–1366. 1997. View Article : Google Scholar | |
Schirrmacher V: Fifty years of clinical application of Newcastle disease virus: Time to celebrate. Biomedicines. 4:E162016. View Article : Google Scholar | |
Ch’ng WC, Stanbridge EJ, Yusoff K and Shafee N: The oncolytic activity of Newcastle disease virus in clear cell carcinoma cells in normoxic and hypoxic conditions: The interplay between VHL and interferon beta signaling. J Interferon Cytokine Res. 33:346–354. 2013. View Article : Google Scholar | |
Schirrmacher V: Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biological agent with potential to break therapy resistance. Exp Opon Biol Ther. 15:1–15. 2015. | |
Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, et al: Antitumor vaccination of patients with glioblastoma multiforme: A pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol. 22:4272–4281. 2004. View Article : Google Scholar | |
Schulze T, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V and Schlag PM: Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: Results of a prospective randomized trial. Cancer Immunol Immunother. 58:61–69. 2009. View Article : Google Scholar | |
Schirrmacher V, Fournier P and Schlag P: Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: Long-term patient survival and mechanism of function. Expert Rev Vaccines. 13:117–130. 2014. View Article : Google Scholar | |
Schirrmacher V, Lorenzen D, Van Gool SW and Stuecker W: A new strategy of cancer immunotherapy combining hyper-thermia/oncolytic virus pretreatment with specific autologous anti-tumor vaccination - A review. Austin Oncol Case Rep. 2:10062017. | |
Yagawa Y, Tanigawa K, Kobayashi Y and Yamamoto M: Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer Metastasis Treat. 3:218–230. 2017. View Article : Google Scholar | |
Desjardins A, Gromeier M, Herndon JE, Beaubier N II, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, et al: Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : | |
VanGool SW, Makalowsky J, Feyen O, Prix L, Schirrmacher V and Stuecker W: The induction of immunogenic cell death (ICD) during maintenance chemotherapy and subsequent multimodal immunotherapy for glioblastoma (GBM). Austin Oncol Case Rep. 3:10102018. | |
Watanabe D and Goshima F: Oncolytic Virotherapy by HSV. Adv Exp Med Biol. 1045:63–84. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russell SJ: RNA viruses as virotherapy agents. Cancer Gene Ther. 9:961–966. 2002. View Article : Google Scholar | |
Cassel WA and Garrett RE: Newcastle disease virus as an anti-neoplastic agent. Cancer. 18:863–868. 1965. View Article : Google Scholar | |
Kroemer G, Galluzzi L, Kepp O and Zitvogel L: Immunogenic cell death in cancer therapy. Annu Rev Immunol. 31:51–72. 2013. View Article : Google Scholar | |
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N and Van Gool SW: Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer. 136:E313–E325. 2015. View Article : Google Scholar | |
Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V and Momburg F: Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol. 83:8108–8121. 2009. View Article : Google Scholar | |
Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP: Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 6:226ra322014. View Article : Google Scholar | |
Sampath P, Li J, Hou W, Chen H, Bartlett DL and Thorne SH: Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 21:620–628. 2013. View Article : Google Scholar | |
Fournier P and Schirrmacher V: Bispecific antibodies and trispecific immunocytokines for targeting the immune system against cancer: Preparing for the future. BioDrugs. 27:35–53. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RH, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD1 immunotherapy. Cell. 170:1109–1119.e10. 2017. View Article : Google Scholar | |
Harrington KJ, Puzanov I, Hecht JR, Hodi FS, Szabo Z, Murugappan S and Kaufman HL: Clinical development of talimogene laherparepvec (T-VEC): A modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther. 15:1389–1403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N and Bell JC: Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 6:821–825. 2000. View Article : Google Scholar | |
Fournier P, Wilden H and Schirrmacher V: Importance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int J Oncol. 40:287–298. 2012. | |
Schirrmacher V: Signaling through RIG-I and type I interferon receptor: Immune activation by Newcastle disease virus in man versus immune evasion by Ebola virus (Review). Int J Mol Med. 36:3–10. 2015. View Article : Google Scholar | |
Ivashkiv LB and Donlin LT: Regulation of type I interferon responses. Nat Rev Immunol. 14:36–49. 2014. View Article : Google Scholar : | |
Zaslavsky E, Hershberg U, Seto J, Pham AM, Marquez S, Duke JL, Wetmur JG, Tenoever BR, Sealfon SC and Kleinstein SH: Antiviral response dictated by choreographed cascade of transcription factors. J Immunol. 184:2908–2917. 2010. View Article : Google Scholar : | |
Tough DF: Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma. 45:257–264. 2004. View Article : Google Scholar | |
Lattanzi L, Rozera C, Marescotti D, D'Agostino G, Santodonato L, Cellini S, Belardelli F, Gavioli R and Ferrantini M: IFN-α boosts epitope cross-presentation by dendritic cells via modulation of proteasome activity. Immunobiology. 216:537–547. 2011. View Article : Google Scholar | |
Bommareddy PK, Shettigar M and Kaufman HL: Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 18:498–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Collins JM, Redman JM and Gulley JL: Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy. Expert Rev Vaccines. 17:697–705. 2018. View Article : Google Scholar | |
van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJ and Bol KF: Dendritic cell cancer therapy: Vaccinating the right patient at the right time. Front Immunol. 9:22652018. View Article : Google Scholar : PubMed/NCBI | |
Abbas KA, Lichtman AH and Pillai S: Cellular and Molecular Immunology. 6th Edition. Saunders Elsevier; Oxford: pp. 2612010 |