1
|
Liang H, Cheung LW, Li J, Ju Z, Yu S,
Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, et al: Whole-exome
sequencing combined with functional genomics reveals novel
candidate driver cancer genes in endometrial cancer. Genome Res.
22:2120–2129. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sorosky JI: Endometrial cancer. Obstet
Gynecol. 120:383–397. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Myatt SS, Wang J, Monteiro LJ, Christian
M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S and Lam EW:
Definition of microRNAs that repress expression of the tumor
suppressor gene FOXO1 in endometrial cancer. Cancer Res.
70:367–377. 2010. View Article : Google Scholar
|
4
|
May K, Bryant A, Dickinson HO, Kehoe S and
Morrison J: Lymphadenectomy for the management of endometrial
cancer. Cochrane Database Syst Rev. 1:CD0075852010.
|
5
|
Gunter MJ, Hoover DR, Yu H,
Wassertheil-Smoller S, Manson JE, Li J, Harris TG, Rohan TE, Xue X,
Ho GY, et al: A prospective evaluation of insulin and insulin-like
growth factor-I as risk factors for endometrial cancer. Cancer
Epidemiol Biomarkers Prev. 17:921–929. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bosse T, Peters EE, Creutzberg CL,
Jürgenliemk-Schulz IM, Jobsen JJ, Mens JW, Lutgens LC, van der
Steen-Banasik EM, Smit VT and Nout RA: Substantial lymph-vascular
space invasion (LVSI) is a significant risk factor for recurrence
in endometrial cancer - A pooled analysis of PORTEC 1 and 2 trials.
Eur J Cancer. 51:1742–1750. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sanz-Chávez TL, Vilar-Compte D, de
Nicola-Delfín L and Meneses-García A: Overweight, obesity,
diabetes, and hypertension in endometrial cancer. Rev Med Inst Mex
Seguro Soc. 51:326–329. 2013.In Spanish.
|
8
|
Shafiee MN, Chapman C, Barrett D, Abu J
and Atiomo W: Reviewing the molecular mechanisms which increase
endo-metrial cancer (EC) risk in women with polycystic ovarian
syndrome (PCOS): Time for paradigm shift? Gynecol Oncol.
131:489–492. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wright JD, Barrena Medel NI, Sehouli J,
Fujiwara K and Herzog TJ: Contemporary management of endometrial
cancer. Lancet. 379:1352–1360. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Johnson WD, Muzzio M, Detrisac CJ,
Kapetanovic IM, Kopelovich L and McCormick DL: Subchronic oral
toxicity and metabolite profiling of the p53 stabilizing agent,
CP-31398, in rats and dogs. Toxicology. 289:141–150. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kapetanovic IM, Muzzio M, McCormick DL,
Thompson TN, Johnson WD, Horn TL, Mohammed A, Rao CV and Kopelovich
L: Pharmacokinetics and tissue and tumor exposure of CP-31398, a
p53-stabilizing agent, in rats. Cancer Chemother Pharmacol.
69:1301–1306. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Madka V, Zhang Y, Li Q, Mohammed A,
Sindhwani P, Lightfoot S, Wu XR, Kopelovich L and Rao CV:
p53-stabilizing agent CP-31398 prevents growth and invasion of
urothelial cancer of the bladder in transgenic UPII-SV40T mice.
Neoplasia. 15:966–974. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
He XX, Zhang YN, Yan JW, Yan JJ, Wu Q and
Song YH: CP-31398 inhibits the growth of p53-mutated liver cancer
cells in vitro and in vivo. Tumour Biol. 37:807–815. 2016.
View Article : Google Scholar
|
14
|
He X, Kong X, Yan J, Yan J, Zhang Y, Wu Q,
Chang Y, Shang H, Dou Q, Song Y, et al: CP-31398 prevents the
growth of p53-mutated colorectal cancer cells in vitro and in vivo.
Tumour Biol. 36:1437–1444. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fiorini C, Menegazzi M, Padroni C, Dando
I, Dalla Pozza E, Gregorelli A, Costanzo C, Palmieri M and
Donadelli M: Autophagy induced by p53-reactivating molecules
protects pancreatic cancer cells from apoptosis. Apoptosis.
18:337–346. 2013. View Article : Google Scholar
|
16
|
Xu J, Timares L, Heilpern C, Weng Z, Li C,
Xu H, Pressey JG, Elmets CA, Kopelovich L and Athar M: Targeting
wild-type and mutant p53 with small molecule CP-31398 blocks the
growth of rhabdomyosarcoma by inducing reactive oxygen
species-dependent apoptosis. Cancer Res. 70:6566–6576. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hashemi M, Omrani M, Eskandari-Nasab E,
Hasani SS, Mashhadi MA and Taheri M: A 40-bp insertion/deletion
polymorphism of Murine Double Minute2 (MDM2) increased the risk of
breast cancer in Zahedan, Southeast Iran. Iran Biomed J.
18:245–249. 2014.PubMed/NCBI
|
18
|
Lu X, Yan C, Huang Y, Shi D, Fu Z, Qiu J
and Yin Y: Mouse double minute 2 (MDM2) upregulates Snail
expression and induces epithelial-to-mesenchymal transition in
breast cancer cells in vitro and in vivo. Oncotarget.
7:37177–37191. 2016.PubMed/NCBI
|
19
|
Roszak A, Misztal M, Sowińska A and
Jagodziński PP: Murine double-minute 2 homolog single nucleotide
polymorphisms 285 and 309 in cervical carcinogenesis. Mol Diagn
Ther. 19:235–244. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gu J, Tang Y, Liu Y, Guo H, Wang Y, Cai L,
Li Y and Wang B: Murine double minute 2 siRNA and wild-type p53
gene therapy enhances sensitivity of the SKOV3/DDP ovarian cancer
cell line to cisplatin chemotherapy in vitro and in vivo. Cancer
Lett. 343:200–209. 2014. View Article : Google Scholar
|
21
|
Nakajima N, Ito Y, Yokoyama K, Uno A,
Kinukawa N, Nemoto N and Moriyama M: The Expression of murine
double minute 2 (MDM2) on Helicobacter pylori-infected intestinal
metaplasia and gastric cancer. J Clin Biochem Nutr. 44:196–202.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Demma MJ, Wong S, Maxwell E and
Dasmahapatra B: CP-31398 restores DNA-binding activity to mutant
p53 in vitro but does not affect p53 homologs p63 and p73. J Biol
Chem. 279:45887–45896. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Haltia UM, Bützow R, Leminen A and
Loukovaara M: FIGO 1988 versus 2009 staging for endometrial
carcinoma: A comparative study on prediction of survival and stage
distribution according to histologic subtype. J Gynecol Oncol.
25:30–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong H, De Marzo AM, Laughner E, Lim M,
Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons
JW: Overexpression of hypoxia-inducible factor 1alpha in common
human cancers and their metastases. Cancer Res. 59:5830–5835.
1999.PubMed/NCBI
|
25
|
Karber G: Determination of median lethal
dose. Arch Exp Pathol Pharmacol. 162:4801931.
|
26
|
Halevy T, Czech C and Benvenisty N:
Molecular mechanisms regulating the defects in fragile X syndrome
neurons derived from human pluripotent stem cells. Stem Cell
Reports. 4:37–46. 2015. View Article : Google Scholar :
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Ayuk SM, Abrahamse H and Houreld NN: The
role of photo-biomodulation on gene expression of cell adhesion
molecules in diabetic wounded fibroblasts in vitro. J Photochem
Photobiol B. 161:368–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni
L, Zhang WG, Nan KJ, Song TS and Huang C: MicroRNA profiling of
human gastric cancer. Mol Med Rep. 2:963–970. 2009.PubMed/NCBI
|
30
|
Fang Y, Chen H, Hu Y, Li Q, Hu Z, Ma T and
Mao X: Burkholderia pseudomallei-derived miR-3473 enhances NF-κB
via targeting TRAF3 and is associated with different inflammatory
responses compared to Burkholderia thailandensis in murine
macrophages. BMC Microbiol. 16:2832016. View Article : Google Scholar
|
31
|
Bell DW: Novel genetic targets in
endometrial cancer. Expert Opin Ther Targets. 18:725–730. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Bansal N, Yendluri V and Wenham RM: The
molecular biology of endometrial cancers and the implications for
pathogenesis, classification, and targeted therapies. Cancer Contr.
16:8–13. 2009. View Article : Google Scholar
|
33
|
Planagumà J, Liljeström M, Alameda F,
Bützow R, Virtanen I, Reventós J and Hukkanen M: Matrix
metalloproteinase-2 and matrix metalloproteinase-9 codistribute
with transcription factors RUNX1/AML1 and ETV5/ERM at the invasive
front of endometrial and ovarian carcinoma. Hum Pathol. 42:57–67.
2011. View Article : Google Scholar
|
34
|
Yoneda T, Kuboyama A, Kato K, Ohgami T,
Okamoto K, Saito T and Wake N: Association of MDM2 SNP309 and TP53
Arg 72Pro polymorphisms with risk of endometrial cancer. Oncol Rep.
30:25–34. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang W, He X, Chan Y and Luo Y: Lack of
association between p53 codon 72 polymorphism and endometrial
cancer: A meta-analysis. Cancer Epidemiol. 36:e153–e157. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Dorjgochoo T, Xiang YB, Long J, Shi J,
Deming S, Xu WH, Cai H, Cheng J, Cai Q, Zheng W, et al: Association
of genetic markers in the BCL-2 family of apoptosis-related genes
with endometrial cancer risk in a Chinese population. PLoS One.
8:e609152013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ma X, Hui Y, Lin L, Wu Y, Zhang X and Liu
P: Clinical significance of COX-2, GLUT-1 and VEGF expressions in
endometrial cancer tissues. Pak J Med Sci. 31:280–284. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang XF, Zhao YB, Wu Q, Sun ZH and Li HJ:
Triptolide induces apoptosis in endometrial cancer via a p53
independent mitochondrial pathway. Mol Med Rep. 9:39–44. 2014.
View Article : Google Scholar
|
39
|
Jiang D, Cho W, Li Z, Xu X, Qu Y, Jiang Z,
Guo L and Xu G: miR-758-3p suppresses proliferation, migration and
invasion of hepatocellular carcinoma cells via targeting MDM2 and
mTOR. Biomed Pharmacother. 96:535–544. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Haupt S, Vijayakumaran R, Miranda PJ,
Burgess A, Lim E and Haupt Y: The role of MDM2 and MDM4 in breast
cancer development and prevention. J Mol Cell Biol. 9:53–61.
2017.PubMed/NCBI
|
41
|
Deb SP, Singh S and Deb S: MDM2
overexpression, activation of signaling networks, and cell
proliferation. Subcell Biochem. 85:215–234. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Peng Q, Mo C, Qin A, Lao X, Chen Z, Sui J,
Wu J, Zhai L, Yang S, Qin X, et al: MDM2 SNP309 polymorphism
contributes to endo-metrial cancer susceptibility: Evidence from a
meta-analysis. J Exp Clin Cancer Res. 32:852013. View Article : Google Scholar
|
43
|
Köhrmann A, Kammerer U, Kapp M, Dietl J
and Anacker J: Expression of matrix metalloproteinases (MMPs) in
primary human breast cancer and breast cancer cell lines: New
findings and review of the literature. BMC Cancer. 9:1882009.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Li H, Qiu Z, Li F and Wang C: The
relationship between MMP-2 and MMP-9 expression levels with breast
cancer incidence and prognosis. Oncol Lett. 14:5865–5870.
2017.PubMed/NCBI
|
45
|
Hu X, Li D, Zhang W, Zhou J, Tang B and Li
L: Matrix metal-loproteinase-9 expression correlates with prognosis
and involved in ovarian cancer cell invasion. Arch Gynecol Obstet.
286:1537–1543. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Grybos A and Bar J: The relationships
between the immunoex-pression of KAI1, MMP-2, MMP-9 and steroid
receptors expression in endometrial cancer. Folia Histochem
Cytobiol. 52:187–194. 2014. View Article : Google Scholar
|
47
|
Yang Y, Zhu J, Gou H, Cao D, Jiang M and
Hou M: Clinical significance of Cox-2, Survivin and Bcl-2
expression in hepato-cellular carcinoma (HCC). Med Oncol.
28:796–803. 2011. View Article : Google Scholar
|
48
|
Hasegawa K, Torii Y, Ishii R, Oe S, Kato R
and Udagawa Y: Effects of a selective COX-2 inhibitor in patients
with uterine endometrial cancers. Arch Gynecol Obstet.
284:1515–1521. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Uddin S, Ahmed M, Hussain A, Assad L,
Al-Dayel F, Bavi P, Al-Kuraya KS and Munkarah A: Cyclooxygenase-2
inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian
cancer. Int J Cancer. 126:382–394. 2010. View Article : Google Scholar
|
50
|
Vogler M: BCL2A1: The underdog in the BCL2
family. Cell Death Differ. 19:67–74. 2012. View Article : Google Scholar :
|
51
|
Du C, Zhang X, Yao M, Lv K, Wang J, Chen
L, Chen Y, Wang S and Fu P: Bcl-2 promotes metastasis through the
epithelial-to-mesenchymal transition in the BCap37 medullary breast
cancer cell line. Oncol Lett. 15:8991–8898. 2018.PubMed/NCBI
|
52
|
Dong P, Xu Z, Jia N, Li D and Feng Y:
Elevated expression of p53 gain-of-function mutation R175H in
endometrial cancer cells can increase the invasive phenotypes by
activation of the EGFR/PI3K/AKT pathway. Mol Cancer. 8:1032009.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Jongen VH, Briët JM, de Jong RA, Joppe E,
ten Hoor KA, Boezen HM, Evans DB, Hollema H, van der Zee AG and
Nijman HW: Aromatase, cyclooxygenase 2, HER-2/neu, and p53 as
prognostic factors in endometrioid endometrial cancer. Int J
Gynecol Cancer. 19:670–676. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mahapatra G, Varughese A, Ji Q, Lee I, Liu
J, Vaishnav A, Sinkler C, Kapralov AA, Moraes CT, Sanderson TH, et
al: Phosphorylation of Cytochrome c Threonine 28 Regulates Electron
Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE. J
Biol Chem. 292:64–79. 2017. View Article : Google Scholar :
|
55
|
Gosslau A, Pabbaraja S, Knapp S and Chen
KY: Trans- and cis-stilbene polyphenols induced rapid perinuclear
mitochondrial clustering and p53-independent apoptosis in cancer
cells but not normal cells. Eur J Pharmacol. 587:25–34. 2008.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Sayeed I, Parvez S, Wali B, Siemen D and
Stein DG: Direct inhibition of the mitochondrial permeability
transition pore: A possible mechanism for better neuroprotective
effects of allo-pregnanolone over progesterone. Brain Res.
1263:165–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hu L, Zhang H, Bergholz J, Sun S and Xiao
ZX: MDM2/MDMX: Master negative regulators for p53 and RB. Mol Cell
Oncol. 3:e11066352016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Nunobiki O, Ueda M, Yamamoto M, Toji E,
Sato N, Izuma S, Okamoto Y, Torii K and Noda S: Polymorphisms of
p53 codon 72 and MDM2 promoter 309 and the risk of endometrial
cancer. Hum Cell. 22:101–106. 2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wang H, Bao W, Jiang F, Che Q, Chen Z,
Wang F, Tong H, Dai C, He X, Liao Y, et al: Mutant p53 (p53-R248Q)
functions as an oncogene in promoting endometrial cancer by
up-regulating REGγ. Cancer Lett. 360:269–279. 2015. View Article : Google Scholar : PubMed/NCBI
|
60
|
Dong P, Tada M, Hamada J, Nakamura A,
Moriuchi T and Sakuragi N: p53 dominant-negative mutant R273H
promotes invasion and migration of human endometrial cancer HHUA
cells. Clin Exp Metastasis. 24:471–483. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Wischhusen J, Naumann U, Ohgaki H,
Rastinejad F and Weller M: CP-31398, a novel p53-stabilizing agent,
induces p53-dependent and p53-independent glioma cell death.
Oncogene. 22:8233–8245. 2003. View Article : Google Scholar : PubMed/NCBI
|
62
|
Moll UM and Petrenko O: The MDM2-p53
interaction. Mol Cancer Res. 1:1001–1008. 2003.
|
63
|
Wang W, Takimoto R, Rastinejad F and
El-Deiry WS: Stabilization of p53 by CP-31398 inhibits
ubiquitination without altering phosphorylation at serine 15 or 20
or MDM2 binding. Mol Cell Biol. 23:2171–2181. 2003. View Article : Google Scholar : PubMed/NCBI
|