1
|
Best MG, Sol N, In't Veld SG, Vancura A,
Muller M, Niemeijer AN, Fejes AV, Tjon Kon Fat LA, Huis In't Veld
AE, Leurs C, et al: Swarm intelligence-enhanced detection of
non-small-cell lung cancer using tumor-educated platelets. Cancer
Cell. 32:238–252.e239. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Serresi M, Gargiulo G, Proost N, Siteur B,
Cesaroni M, Koppens M, Xie H, Sutherland KD, Hulsman D, Citterio E,
et al: Polycomb repressive complex 2 is a barrier to KRAS-driven
inflammation and epithelial-mesenchymal transition in
non-small-cell lung cancer. Cancer Cell. 29:17–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu
K, Tang J, Zeng L and Sang Y: SUN2 exerts tumor suppressor
functions by suppressing the Warburg effect in lung cancer. Sci
Rep. 5:179402015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Politi K, Ayeni D and Lynch T: The next
wave of EGFR tyrosine kinase inhibitors enter the clinic. Cancer
Cell. 27:751–753. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aktary Z and Pasdar M: Plakoglobin: Role
in tumorigenesis and metastasis. Int J Cell Biol. 2012:1895212012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sechler M, Borowicz S, Van Scoyk M,
Avasarala S, Zerayesus S, Edwards MG, Kumar Karuppusamy Rathinam M,
Zhao X, Wu PY, Tang K, et al: Novel role for γ-catenin in the
regulation of cancer cell migration via the induction of hepatocyte
growth factor activator inhibitor type-1 (HAI-1). J Biol Chem.
290:15610–15620. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
McCrea PD, Turck CW and Gumbiner B: A
homolog of the armadillo protein in Drosophila (plakoglobin)
associated with E-cadherin. Science. 254:1359–1361. 1991.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Passlick B, Pantel K, Stosiek P, Hosch S,
Thetter O and Izbicki JR: Expression of plakoglobin in bronchial
carcinomas: Incidence and significance for disease outcome.
Langenbecks Arch Chir Suppl Kongressbd. 113:810–813. 1996.In
German.
|
9
|
Pantel K, Passlick B, Vogt J, Stosiek P,
Angstwurm M, Seen-Hibler R, Häussinger K, Thetter O, Izbicki JR and
Riethmüller G: Reduced expression of plakoglobin indicates an
unfavorable prognosis in subsets of patients with non-small-cell
lung cancer. J Clin Oncol. 16:1407–1413. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pirinen RT, Hirvikoski P, Johansson RT,
Hollmén S and Kosma VM: Reduced expression of alpha-catenin,
beta-catenin, and gamma-catenin is associated with high cell
proliferative activity and poor differentiation in non-small cell
lung cancer. J Clin Pathol. 54:391–395. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
He X, Zhou T, Yang G, Fang W, Li Z, Zhan
J, Zhao Y, Cheng Z, Huang Y, Zhao H, et al: The expression of
plakoglobin is a potential prognostic biomarker for patients with
surgically resected lung adenocarcinoma. Oncotarget. 7:15274–15287.
2016.PubMed/NCBI
|
12
|
Alaee M, Nool K and Pasdar M: Plakoglobin
restores tumor suppressor activity of p53R175H mutant by
sequestering the oncogenic potential of β-catenin. Cancer Sci.
109:1876–1888. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Winn RA and Heasley LE: Gamma-catenin
expression is reduced or absent in a subset of human non-small cell
lung cancers, and its re-expression inhibits cell growth. Chest.
125(Suppl 5): 122S–123S. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Winn RA, Bremnes RM, Bemis L, Franklin WA,
Miller YE, Cool C and Heasley LE: gamma-Catenin expression is
reduced or absent in a subset of human lung cancers and
re-expression inhibits transformed cell growth. Oncogene.
21:7497–7506. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parker HR, Li Z, Sheinin H, Lauzon G and
Pasdar M: Plakoglobin induces desmosome formation and epidermoid
phenotype in N-cadherin-expressing squamous carcinoma cells
deficient in plakoglobin and E-cadherin. Cell Motil Cytoskeleton.
40:87–100. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Breault JE, Shiina H, Igawa M,
Ribeiro-Filho LA, Deguchi M, Enokida H, Urakami S, Terashima M,
Nakagawa M, Kane CJ, et al: Methylation of the gamma-catenin gene
is associated with poor prognosis of renal cell carcinoma. Clin
Cancer Res. 11:557–564. 2005.PubMed/NCBI
|
17
|
Shiina H, Breault JE, Basset WW, Enokida
H, Urakami S, Li LC, Okino ST, Deguchi M, Kaneuchi M, Terashima M,
et al: Functional loss of the gamma-catenin gene through epigenetic
and genetic pathways in human prostate cancer. Cancer Res.
65:2130–2138. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gastaldi T, Bonvini P, Sartori F, Marrone
A, Iolascon A and Rosolen A: Plakoglobin is differentially
expressed in alveolar and embryonal rhabdomyosarcoma and is
regulated by DNA methylation and histone acetylation.
Carcinogenesis. 27:1758–1767. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shafiei F, Rahnama F, Pawella L, Mitchell
MD, Gluckman PD and Lobie PE: DNMT3A and DNMT3B mediate autocrine
hGH repression of plakoglobin gene transcription and consequent
phenotypic conversion of mammary carcinoma cells. Oncogene.
27:2602–2612. 2008. View Article : Google Scholar
|
20
|
Wang L, Syn NL, Subhash VV, Any Y, Thuya
WL, Cheow ES, Kong L, Yu F, Peethala PC, Wong AL, et al: Pan-HDAC
inhibition by panobinostat mediates chemosensitization to
carboplatin in non-small cell lung cancer via attenuation of EGFR
signaling. Cancer Lett. 417:152–160. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li F, Wang T, Wang Z, Chen X and Liu R:
Histone deacetylase inhibitor quisinostat activates caspase
signaling and upregulates p53 acetylation to inhibit the
proliferation of HepG2 cells. Mol Med Rep. 16:6094–6101. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yu W, Lu W, Chen G, Cheng F, Su H, Chen Y,
Liu M and Pang X: Inhibition of histone deacetylases sensitizes EGF
receptor-TK inhibitor-resistant non-small-cell lung cancer cells to
erlotinib in vitro and in vivo. Br J Pharmacol. 174:3608–3622.
2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Farooqi AA, Naqvi SK, Perk AA, Yanar O,
Tabassum S, Ahmad MS, Mansoor Q, Ashry MS, Ismail M, Naoum GE, et
al: Natural agents-mediated targeting of histone deacetylases. Arch
Immunol Ther Exp (Warsz). 66:31–44. 2018. View Article : Google Scholar
|
24
|
Yim JH, Baek JH, Lee CW, Kim MJ, Yun HS,
Hong EH, Lee SJ, Park JK, Um HD and Hwang SG: Identification of
HDAC4 as a target of γ-catenin that regulates the oncogenic
K-Ras-mediated malignant phenotype of Rat2 cells. Biochem Biophys
Res Commun. 436:436–442. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bailey CK, Mittal MK, Misra S and
Chaudhuri G: High motility of triple-negative breast cancer cells
is due to repression of plakoglobin gene by metastasis modulator
protein SLUG. J Biol Chem. 287:19472–19486. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shim JS, Kim DH and Kwon HJ: Plakoglobin
is a new target gene of histone deacetylase in human fibrosarcoma
HT1080 cells. Oncogene. 23:1704–1711. 2004. View Article : Google Scholar
|
27
|
Sang Y, Zang R, Sun L, Kaddie C, Li SW,
Xiong L, Peng Y, Zeng L and Huang G: MORF4L1 suppresses cell
proliferation, migration and invasion by increasing p21 and
E-cadhering expression in nasopharyngeal carcinoma. Oncol Lett.
17:294–302. 2019.PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Sang Y, Chen MY, Luo D, Zhang RH, Wang L,
Li M, Luo R, Qian CN, Shao JY, Zeng YX, et al: TEL2 suppresses
metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma.
Oncotarget. 6:29240–29253. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Győrffy B, Surowiak P, Budczies J and
Lánczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar
|
31
|
Ding S, Khoury-Hanold W, Iwasaki A and
Robek MD: Epigenetic reprogramming of the type III interferon
response potentiates antiviral activity and suppresses tumor
growth. PLoS Biol. 12:e10017582014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vanhaecke T, Papeleu P, Elaut G and
Rogiers V: Trichostatin A-like hydroxamate histone deacetylase
inhibitors as therapeutic agents: Toxicological point of view. Curr
Med Chem. 11:1629–1643. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee BM and Mahadevan LC: Stability of
histone modifications across mammalian genomes: Implications for
'epigenetic' marking. J Cell Biochem. 108:22–34. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hayashi-Takanaka Y, Maehara K, Harada A,
Umehara T, Yokoyama S, Obuse C, Ohkawa Y, Nozaki N and Kimura H:
Distribution of histone H4 modifications as revealed by a panel of
specific monoclonal antibodies. Chromosome Res. 23:753–766. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang WY, Hsu SD, Huang HY, Sun YM, Chou
CH, Weng SL and Huang HD: MethHC: A database of DNA methylation and
gene expression in human cancer. Nucleic Acids Res. 43:D856–D861.
2015. View Article : Google Scholar :
|
36
|
Ouaïssi M, Sielezneff I, Silvestre R,
Sastre B, Bernard JP, Lafontaine JS, Payan MJ, Dahan L, Pirrò N,
Seitz JF, et al: High histone deacetylase 7 (HDAC7) expression is
significantly associated with adenocarcinomas of the pancreas. Ann
Surg Oncol. 15:2318–2328. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang L, Bu L, Hu J, Xu Z, Ruan L, Fang Y
and Wang P: HDAC1 knockdown inhibits invasion and induces apoptosis
in non-small cell lung cancer cells. Biol Chem. 399:603–610. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ,
Xie HJ, Chang YG, Kim MG, Park H, Lee JY, et al: HDAC2
overexpression confers oncogenic potential to human lung cancer
cells by deregulating expression of apoptosis and cell cycle
proteins. J Cell Biochem. 113:2167–2177. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu C, Lv D, Li M, Zhang X, Sun G, Bai Y
and Chang D: Hypermethylation of miRNA-589 promoter leads to
upregulation of HDAC5 which promotes malignancy in non-small cell
lung cancer. Int J Oncol. 50:2079–2090. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yang Y, Huang Y, Wang Z, Wang HT, Duan B,
Ye D, Wang C, Jing R, Leng Y, Xi J, et al: HDAC10 promotes lung
cancer proliferation via AKT phosphorylation. Oncotarget.
7:59388–59401. 2016.PubMed/NCBI
|
41
|
Lei Y, Liu L, Zhang S, Guo S, Li X, Wang
J, Su B, Fang Y, Chen X, Ke H, et al: Hdac7 promotes lung
tumorigenesis by inhibiting Stat3 activation. Mol Cancer.
16:1702017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gao S, Liu H, Hou S, Wu L, Yang Z, Shen J,
Zhou L, Zheng SS and Jiang B: MiR-489 suppresses tumor growth and
invasion by targeting HDAC7 in colorectal cancer. Clin Transl
Oncol. 20:703–712. 2018. View Article : Google Scholar
|
43
|
Wu MY, Fu J, Xiao X, Wu J and Wu RC:
MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7
in breast cancer. Cancer Lett. 354:311–319. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu C, Chen Q, Xie Z, Ai J, Tong L, Ding J
and Geng M: The role of histone deacetylase 7 (HDAC7) in cancer
cell proliferation: Regulation on c-Myc. J Mol Med (Berl).
89:279–289. 2011. View Article : Google Scholar
|
45
|
Peixoto P, Blomme A, Costanza B, Ronca R,
Rezzola S, Palacios AP, Schoysman L, Boutry S, Goffart N, Peulen O,
et al: HDAC7 inhibition resets STAT3 tumorigenic activity in human
glioblastoma independently of EGFR and PTEN: New opportunities for
selected targeted therapies. Oncogene. 35:4481–4494. 2016.
View Article : Google Scholar : PubMed/NCBI
|