1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Scheer A and Auer RA: Surveillance after
curative resection of colorectal cancer. Clin Colon Rectal Surg.
22:242–250. 2009. View Article : Google Scholar :
|
3
|
Van Cutsem E, Nordlinger B and Cervantes
A; ESMO Guidelines Working Group: Advanced colorectal cancer: ESMO
Clinical Practice Guidelines for treatment. Ann Oncol. 21(Suppl 5):
v93–v97. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schüle S, Dittmar Y, Knösel T, Krieg P,
Albrecht R, Settmacher U and Altendorf-Hofmann A: Long-term results
and prognostic factors after resection of hepatic and pulmonary
metastases of colorectal cancer. Int J Colorectal Dis. 28:537–545.
2013. View Article : Google Scholar
|
5
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar
|
6
|
Fish L, Pencheva N, Goodarzi H, Tran H,
Yoshida M and Tavazoie SF: Muscleblind-like 1 suppresses breast
cancer metastatic colonization and stabilizes metastasis suppressor
transcripts. Genes Dev. 30:386–398. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng AW, Shi J, Wong P, Luo KL, Trepman
P, Wang ET, Choi H, Burge CB and Lodish HF: Muscleblind-like 1
(Mbnl1) regulates pre-mRNA alternative splicing during terminal
erythropoiesis. Blood. 124:598–610. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vajda NA, Brimacombe KR, LeMasters KE and
Ladd AN: Muscleblind-like 1 is a negative regulator of
TGF-beta-dependent epithelial-mesenchymal transition of
atrioventricular canal endocardial cells. Dev Dyn. 238:3266–3272.
2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Begemann G, Paricio N, Artero R, Kiss I,
Pérez-Alonso M and Mlodzik M: muscleblind, a gene required for
photoreceptor differentiation in Drosophila, encodes novel nuclear
Cys3His-type zinc-finger-containing proteins. Development.
124:4321–4331. 1997.PubMed/NCBI
|
10
|
Artero R, Prokop A, Paricio N, Begemann G,
Pueyo I, Mlodzik M, Perez-Alonso M and Baylies MK: The muscleblind
gene participates in the organization of Z-bands and epidermal
attachments of Drosophila muscles and is regulated by Dmef2. Dev
Biol. 195:131–143. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pascual M, Vicente M, Monferrer L and
Artero R: The Muscleblind family of proteins: An emerging class of
regulators of developmentally programmed alternative splicing.
Differentiation. 74:65–80. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang ET, Cody NA, Jog S, Biancolella M,
Wang TT, Treacy DJ, Luo S, Schroth GP, Housman DE, Reddy S, et al:
Transcriptome-wide regulation of pre-mRNA splicing and mRNA
localization by muscleblind proteins. Cell. 150:710–724. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Masuda A, Andersen HS, Doktor TK, Okamoto
T, Ito M, Andresen BS and Ohno K: CUGBP1 and MBNL1 preferentially
bind to 3′ UTRs and facilitate mRNA decay. Sci Rep. 2:2092012.
View Article : Google Scholar
|
14
|
Batra R, Charizanis K, Manchanda M, Mohan
A, Li M, Finn DJ, Goodwin M, Zhang C, Sobczak K, Thornton CA, et
al: Loss of MBNL leads to disruption of developmentally regulated
alternative polyadenylation in RNA-mediated disease. Mol Cell.
56:311–322. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rau F, Freyermuth F, Fugier C, Villemin
JP, Fischer MC, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D, et
al: Misregulation of miR-1 processing is associated with heart
defects in myotonic dystrophy. Nat Struct Mol Biol. 18:840–845.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bates RC and Mercurio AM: The
epithelial-mesenchymal transition (EMT) and colorectal cancer
progression. Cancer Biol Ther. 4:365–370. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zeisberg M and Neilson EG: Biomarkers for
epithelial-mesenchymal transitions. J Clin Invest. 119:1429–1437.
2009. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Weaver S, Dube S, Mir A, Qin J, Sun G,
Ramakrishnan R, Jones RC and Livak KJ: Taking qPCR to a higher
level: Analysis of CNV reveals the power of high throughput qPCR to
enhance quantitative resolution. Methods. 50:271–276. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yan JK, Zhu J, Gong ZZ, Wen J, Xiao YT,
Zhang T and Cai W: Supplementary choline attenuates olive oil lipid
emulsion-induced enterocyte apoptosis through suppression of
CELF1/AIF pathway. J Cell Mol Med. 22:1562–1573. 2018. View Article : Google Scholar
|
22
|
Feng J, Cen J, Li J, Zhao R, Zhu C, Wang
Z, Xie J and Tang W: Histone deacetylase inhibitor valproic acid
(VPA) promotes the epithelial mesenchymal transition of colorectal
cancer cells via up regulation of Snail. Cell Adhes Migr.
9:495–501. 2015. View Article : Google Scholar
|
23
|
Yang S, Li WS, Dong F, Sun HM, Wu B, Tan
J, Zou WJ and Zhou DS: KITLG is a novel target of miR-34c that is
associated with the inhibition of growth and invasion in colorectal
cancer cells. J Cell Mol Med. 18:2092–2102. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Calon A, Espinet E, Palomo-Ponce S,
Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung
P, Zhang XH, et al: Dependency of colorectal cancer on a
TGF-β-driven program in stromal cells for metastasis initiation.
Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Valastyan S and Weinberg RA: Tumor
metastasis: Molecular insights and evolving paradigms. Cell.
147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin CH, Chiang MC and Chen YJ:
MicroRNA-328 inhibits migration and epithelial-mesenchymal
transition by targeting CD44 in nasopharyngeal carcinoma cells.
OncoTargets Ther. 11:2375–2385. 2018. View Article : Google Scholar
|
28
|
Luo C, Yin D, Zhan H, Borjigin U, Li C,
Zhou Z, Hu Z, Wang P, Sun Q, Fan J, et al: microRNA-501-3p
suppresses metastasis and progression of hepatocellular carcinoma
through targeting LIN7A. Cell Death Dis. 9:5352018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu W, Li M, Chen X, Zhu S, Shi H, Zhang
D, Cheng C and Li B: MicroRNA-1 suppresses proliferation, migration
and invasion by targeting Notch2 in esophageal squamous cell
carcinoma. Sci Rep. 8:51832018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang N, Tian L, Miao Z and Guo N:
MicroRNA-197 induces epithelial-mesenchymal transition and invasion
through the downregulation of HIPK2 in lung adenocarcinoma. J
Genet. 47:47–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brook JD, McCurrach ME, Harley HG, Buckler
AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson
T, et al: Molecular basis of myotonic dystrophy: Expansion of a
trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a
protein kinase family member. Cell. 69:3851992.
|
32
|
Liquori CL, Ricker K, Moseley ML, Jacobsen
JF, Kress W, Naylor SL, Day JW and Ranum LP: Myotonic dystrophy
type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science.
293:864–867. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Andres SF, Simmons JG, Mah AT, Santoro MA,
Van Landeghem L and Lund PK: Insulin receptor isoform switching in
intestinal stem cells, progenitors, differentiated lineages and
tumors: Evidence that IR-B limits proliferation. J Cell Sci.
126:5645–5656. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
The Human Protein Atlas: Expression of
MBNL1 in cancer. https://www.proteinatlas.org/ENSG00000152601-MBNL1/pathology.
|
35
|
Paul S, Dansithong W, Jog SP, Holt I,
Mittal S, Brook JD, Morris GE, Comai L and Reddy S: Expanded CUG
repeats Dysregulate RNA splicing by altering the stoichiometry of
the muscleblind 1 complex. J Biol Chem. 286:38427–38438. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kulkarni M, Ozgur S and Stoecklin G: On
track with P-bodies. Biochem Soc Trans. 38:242–251. 2010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chan SP and Slack FJ: microRNA-mediated
silencing inside P-bodies. RNA Biol. 3:97–100. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fillman C and Lykke-Andersen J: RNA
decapping inside and outside of processing bodies. Curr Opin Cell
Biol. 17:326–331. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Youn JY, Dunham WH, Hong SJ, Knight JDR,
Bashkurov M, Chen GI, Bagci H, Rathod B, MacLeod G, Eng SWM, et al:
High-Density Proximity Mapping Reveals the Subcellular Organization
of mRNA-Associated Granules and Bodies. Mol Cell. 69:517–532, e11.
2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hubstenberger A, Courel M, Bénard M,
Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A,
Fradet M, et al: P-Body Purification Reveals the Condensation of
Repressed mRNA Regulons. Mol Cell. 68:144–157, e5. 2017. View Article : Google Scholar : PubMed/NCBI
|