Iron metabolism and its contribution to cancer (Review)
- Authors:
- Ying Chen
- Zhimin Fan
- Ye Yang
- Chunyan Gu
-
Affiliations: National Medical Centre of Colorectal Disease, The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China - Published online on: February 20, 2019 https://doi.org/10.3892/ijo.2019.4720
- Pages: 1143-1154
This article is mentioned in:
Abstract
Kerins MJ and Ooi A: The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 29:1756–1773. 2018. View Article : Google Scholar : | |
Andrews NC: Forging a field: The golden age of iron biology. Blood. 112:219–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dielschneider RF, Henson ES and Gibson SB: Lysosomes as oxidative targets for cancer therapy. Oxid Med Cell Longev. 2017:37491572017. View Article : Google Scholar : PubMed/NCBI | |
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, et al: Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 88:181–195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann NY Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fonseca-Nunes A, Jakszyn P and Agudo A: Iron and cancer risk - a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 23:12–31. 2014. View Article : Google Scholar | |
Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leftin A, Ben-Chetrit N, Klemm F, Joyce JA and Koutcher JA: Iron imaging reveals tumor and metastasis macrophage hemosiderin deposits in breast cancer. PLoS One. 12:e01847652017. View Article : Google Scholar : PubMed/NCBI | |
Rouault TA and Maio N: Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem. 292:12744–12753. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuss JO, Tsai CL, Ishida JP and Tainer JA: Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim Biophys Acta. 1853:1253–1271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Imlay JA and Linn S: DNA damage and oxygen radical toxicity. Science. 240:1302–1309. 1988. View Article : Google Scholar : PubMed/NCBI | |
Brandt KE, Falls KC, Schoenfeld JD, Rodman SN, Gu Z, Zhan F, Cullen JJ, Wagner BA, Buettner GR, Allen BG, et al: Augmentation of intracellular iron using iron sucrose enhances the toxicity of pharmacological ascorbate in colon cancer cells. Redox Biol. 14:82–87. 2018. View Article : Google Scholar | |
Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, Wang PH, Agarwal S, Tamouza H, Paubelle E, et al: Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med. 207:731–750. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heath JL, Weiss JM, Lavau CP and Wechsler DS: Iron deprivation in cancer - potential therapeutic implications. Nutrients. 5:2836–2859. 2013. View Article : Google Scholar : PubMed/NCBI | |
González A, Gálvez N, Martín J, Reyes F, Pérez-Victoria I and Dominguez-Vera JM: Identification of the key excreted molecule by Lactobacillus fermentum related to host iron absorption. Food Chem. 228:374–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Staroń R, Lipiński P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E, Krzeptowski W, Pieszka M, Korolonek T, Hamza I, et al: Dietary hemoglobin rescues young piglets from severe iron defi-ciency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLoS One. 12:e01811172017. View Article : Google Scholar | |
Li Y, Jiang H and Huang G: Protein hydrolysates as promoters of non-haem iron absorption. Nutrients. 9:92017. View Article : Google Scholar | |
Martínez-Torres C and Layrisse M: Iron absorption from veal muscle. Am J Clin Nutr. 24:531–540. 1971. View Article : Google Scholar : PubMed/NCBI | |
Ascenzi P, Leboffe L and Polticelli F: Cyanide binding to human plasma heme-hemopexin: A comparative study. Biochem Biophys Res Commun. 428:239–244. 2012. View Article : Google Scholar : PubMed/NCBI | |
Colins A, Gerdtzen ZP, Nuñez MT and Salgado JC: Mathematical modeling of intestinal iron absorption using genetic programming. PLoS One. 12:e01696012017. View Article : Google Scholar : PubMed/NCBI | |
Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S and Andrews NC: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1:191–200. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sokolov AV, Voynova IV, Kostevich VA, Vlasenko AY, Zakharova ET and Vasilyev VB: Comparison of interaction between ceruloplasmin and lactoferrin/transferrin: To bind or not to bind. Biochemistry (Mosc). 82:1073–1078. 2017. View Article : Google Scholar | |
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T and Kaplan J: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 306:2090–2093. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ, Bae DH, Merlot AM, Sahni S and Richardson DR: Duodenal cytochrome b (DCYTB) in iron metabolism: An update on function and regulation. Nutrients. 7:2274–2296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Skjørringe T, Burkhart A, Johnsen KB and Moos T: Divalent metal transporter 1 (DMT1) in the brain: Implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 8:192015.PubMed/NCBI | |
Harrison PM and Arosio P: The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1275:161–203. 1996. View Article : Google Scholar : PubMed/NCBI | |
McKie AT and Barlow DJ: The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447:801–806. 2004. View Article : Google Scholar | |
Park CH, Valore EV, Waring AJ and Ganz T: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 276:7806–7810. 2001. View Article : Google Scholar | |
Liuzzi JP, Aydemir F, Nam H, Knutson MD and Cousins RJ: Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA. 103:13612–13617. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Vann DR, Doulias P-T, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, et al: Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest. 127:2407–2417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mwanjewe J and Grover AK: Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J. 378:975–982. 2004. View Article : Google Scholar | |
Knutson MD: Non-transferrin-bound iron transporters. Free Radic Biol Med. 133:101–111. 2019. View Article : Google Scholar | |
Yoshizaki T, Uematsu M, Obata JE, Nakamura T, Fujioka D, Watanabe K, Nakamura K and Kugiyama K: Angiotensin II receptor blockers suppress the release of stromal cell-derived factor-1alpha from infarcted myocardium in patients with acute myocardial infarction. J Cardiol. 71:367–374. 2018. View Article : Google Scholar | |
Recuenco MC, Rahman MM, Takeuchi F, Kobayashi K and Tsubaki M: Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical. Biochemistry. 52:3660–3668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ and Lawen A: Ascorbate and plasma membrane electron transport - enzymes vs efflux. Free Radic Biol Med. 47:485–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, et al: The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17:282–290. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coates TD: Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med. 72:23–40. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC and Hediger MA: Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 509:309–316. 2001. View Article : Google Scholar : PubMed/NCBI | |
Anderson CP, Shen M, Eisenstein RS and Leibold EA: Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 1823:1468–1483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL and Yariv J: Ferritin: Design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 304:551–565. 1984. View Article : Google Scholar : PubMed/NCBI | |
Carmona U, Li L, Zhang L and Knez M: Ferritin light-chain subunits: Key elements for the electron transfer across the protein cage. Chem Commun (Camb). 50:15358–15361. 2014. View Article : Google Scholar | |
Kukulj S, Jaganjac M, Boranic M, Krizanac S, Santic Z and Poljak-Blazi M: Altered iron metabolism, inflammation, trans-ferrin receptors, and ferritin expression in non-small-cell lung cancer. Med Oncol. 27:268–277. 2010. View Article : Google Scholar | |
Ganz T and Nemeth E: Iron metabolism: Interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2:a0116682012. View Article : Google Scholar : PubMed/NCBI | |
Cianetti L, Gabbianelli M and Sposi NM: Ferroportin and erythroid cells: an update. Adv Hematol. 2010:4041732010. View Article : Google Scholar : PubMed/NCBI | |
Wallace DF, McDonald CJ, Ostini L, Iser D, Tuckfield A and Subramaniam VN: The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation. Am J Hematol. 92:1052–1061. 2017. View Article : Google Scholar : PubMed/NCBI | |
El Hage Chahine JM, Hémadi M and Ha-Duong NT: Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta. 1820:334–347. 2012. View Article : Google Scholar | |
Frazer DM and Anderson GJ: The regulation of iron transport. Biofactors. 40:206–214. 2014. View Article : Google Scholar | |
Addo L, Ikuta K, Tanaka H, Toki Y, Hatayama M, Yamamoto M, Ito S, Shindo M, Sasaki Y, Shimonaka Y, et al: The three isoforms of hepcidin in human serum and their processing determined by liquid chromatography-tandem mass spectrometry (LC-tandem MS). Int J Hematol. 103:34–43. 2016. View Article : Google Scholar | |
Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T and Nemeth E: Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15:918–924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ramos E, Kautz L, Rodriguez R, Hansen M, Gabayan V, Ginzburg Y, Roth MP, Nemeth E and Ganz T: Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology. 53:1333–1341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coffey R and Ganz T: Iron homeostasis: An anthropocentric perspective. J Biol Chem. 292:12727–12734. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, Ernst M, Klein C and Trautwein C: STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 132:294–300. 2007. View Article : Google Scholar : PubMed/NCBI | |
Palis J: Primitive and definitive erythropoiesis in mammals. Front Physiol. 5:32014. View Article : Google Scholar : PubMed/NCBI | |
Papanikolaou G and Pantopoulos K: Systemic iron homeostasis and erythropoiesis. IUBMB Life. 69:399–413. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, et al: Mitoferrin is essential for erythroid iron assimilation. Nature. 440:96–100. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beaumont C and Canonne-Hergaux F: Erythrophagocytosis and recycling of heme iron in normal and pathological conditions; regulation by hepcidin. Transfus Clin Biol. 12:123–130. 2005. View Article : Google Scholar : PubMed/NCBI | |
Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, He S, Gerhardt LM, Holderried TA, Seifert M, et al: On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 22:945–951. 2016. View Article : Google Scholar : PubMed/NCBI | |
Soe-Lin S, Apte SS, Mikhael MR, Kayembe LK, Nie G and Ponka P: Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol. 38:609–617. 2010. View Article : Google Scholar : PubMed/NCBI | |
Poss KD and Tonegawa S: Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA. 94:10919–10924. 1997. View Article : Google Scholar : PubMed/NCBI | |
Qian ZM and Tang PL: Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta. 1269:205–214. 1995. View Article : Google Scholar : PubMed/NCBI | |
Morgan EH: Chelator-mediated iron efflux from reticulocytes. Biochim Biophys Acta. 733:39–50. 1983. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B and Knutson MD: ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem. 287:34032–34043. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, Liuzzi JP, Cousins RJ, Knutson MD and Mackenzie B: Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 301:C862–C871. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP and Backx PH: Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: Possible implications in iron overload. Circ Res. 84:1302–1309. 1999. View Article : Google Scholar : PubMed/NCBI | |
Brittenham GM, Andersson M, Egli I, Foman JT, Zeder C, Westerman ME and Hurrell RF: Circulating non-trans-ferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: A randomized study. Am J Clin Nutr. 100:813–820. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pinto JP, Arezes J, Dias V, Oliveira S, Vieira I, Costa M, Vos M, Carlsson A, Rikers Y, Rangel M, et al: Physiological implications of NTBI uptake by T lymphocytes. Front Pharmacol. 5:242014. View Article : Google Scholar : PubMed/NCBI | |
Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G and Vaulont S: Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica. 95:501–504. 2010. View Article : Google Scholar : | |
Iancu TC, Ward RJ and Peters TJ: Ultrastructural changes in the pancreas of carbonyl iron-fed rats. J Pediatr Gastroenterol Nutr. 10:95–101. 1990. View Article : Google Scholar : PubMed/NCBI | |
Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P and Barasch J: NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 1823:1451–1458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Martines AM, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JF and Swinkels DW: Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat Rev Nephrol. 9:385–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lakhal-Littleton S, Wolna M, Carr CA, Miller JJ, Christian HC, Ball V, Santos A, Diaz R, Biggs D, Stillion R, et al: Cardiac ferro-portin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci USA. 112:3164–3169. 2015. View Article : Google Scholar | |
Richmond HG: Induction of sarcoma in the rat by iron-dextran complex. BMJ. 1:947–949. 1959. View Article : Google Scholar : PubMed/NCBI | |
Xue X and Shah YM: Intestinal iron homeostasis and colon tumorigenesis. Nutrients. 5:2333–2351. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kew MC: Hepatic iron overload and hepatocellular carcinoma. Liver Cancer. 3:31–40. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stevens RG, Cologne JB, Nakachi K, Grant EJ and Neriishi K: Body iron stores and breast cancer risk in female atomic bomb survivors. Cancer Sci. 102:2236–2240. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang X: Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutat Res. 533:153–171. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar | |
Haggar FA and Boushey RP: Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 22:191–197. 2009. View Article : Google Scholar : | |
Chua ACG, Klopcic B, Lawrance IC, Olynyk JK and Trinder D: Iron: An emerging factor in colorectal carcinogenesis. World J Gastroenterol. 16:663–672. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Akhmedkhanov A and Riboli E: Iron intake, body iron stores and colorectal cancer risk in women: A nested case-control study. Int J Cancer. 80:693–698. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wilson MJ, Dekker JWT, Harlaar JJ, Jeekel J, Schipperus M and Zwaginga JJ: The role of preoperative iron deficiency in colorectal cancer patients: Prevalence and treatment. Int J Colorectal Dis. 32:1617–1624. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Juan D, Reta A, Castiella A, Pozueta J, Prada A and Cuadrado E: HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. Eur J Hum Genet. 9:961–964. 2001. View Article : Google Scholar | |
Castiella A, Múgica F, Zapata E, Zubiaurre L, Iribarren A, de Juan MD, Alzate L, Gil I, Urdapilleta G, Otazua P, et al: Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps. Tumour Biol. 36:6959–6963. 2015. View Article : Google Scholar : PubMed/NCBI | |
Asberg A, Thorstensen K, Irgens WO, Romundstad PR and Hveem K: Cancer risk in HFE C282Y homozygotes: Results from the HUNT 2 study. Scand J Gastroenterol. 48:189–195. 2013. View Article : Google Scholar | |
Ludwig H, Müldür E, Endler G and Hübl W: Prevalence of iron deficiency across different tumors and its association with poor performance status, disease status and anemia. Ann Oncol. 24:1886–1892. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nelson RL: Dietary iron and colorectal cancer risk. Free Radic Biol Med. 12:161–168. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wilson MJ, Harlaar JJ, Jeekel J, Schipperus M and Zwaginga JJ: Iron therapy as treatment of anemia: A potentially detrimental and hazardous strategy in colorectal cancer patients. Med Hypotheses. 110:110–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Joosten E, Meeuwissen J, Vandewinckele H and Hiele M: Iron status and colorectal cancer in symptomatic elderly patients. Am J Med. 121:1072–1077. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wilson MJ, Dekker JW, Bruns E, Borstlap W, Jeekel J, Zwaginga JJ and Schipperus M: Short-term effect of preoperative intravenous iron therapy in colorectal cancer patients with anemia: Results of a cohort study. Transfusion. 58:795–803. 2018. View Article : Google Scholar | |
Laso-Morales M, Jericó C, Gómez-Ramírez S, Castellví J, Viso L, Roig-Martínez I, Pontes C and Muñoz M: Preoperative management of colorectal cancer-induced iron deficiency anemia in clinical practice: Data from a large observational cohort. Transfusion. 57:3040–3048. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baecker A, Liu X, La Vecchia C and Zhang ZF: Worldwide incidence of hepatocellular carcinoma cases attributable to major risk factors. Eur J Cancer Prev. 27:205–212. 2018.PubMed/NCBI | |
Sun B and Karin M: Obesity, inflammation, and liver cancer. J Hepatol. 56:704–713. 2012. View Article : Google Scholar | |
Bardou-Jacquet E, Morcet J, Manet G, Lainé F, Perrin M, Jouanolle AM, Guyader D, Moirand R, Viel JF and Deugnier Y: Decreased cardiovascular and extrahepatic cancer-related mortality in treated patients with mild HFE hemochromatosis. J Hepatol. 62:682–689. 2015. View Article : Google Scholar | |
Grosse SD, Rogowski WH, Ross LF, Cornel MC, Dondorp WJ and Khoury MJ: Population screening for genetic disorders in the 21st century: Evidence, economics, and ethics. Public Health Genomics. 13:106–115. 2010. View Article : Google Scholar | |
Da Costa GG, Gomig TH, Kaviski R, Santos Sousa K, Kukolj C, De Lima RS, De Andrade Urban C, Cavalli IJ and Ribeiro EM: Comparative proteomics of tumor and paired normal breast tissue highlights potential biomarkers in breast cancer. Cancer Genomics Proteomics. 12:251–261. 2015.PubMed/NCBI | |
Nunes-Xavier CE, Martín-Pérez J, Elson A and Pulido R: Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta. 1836:211–226. 2013.PubMed/NCBI | |
Tonks NK: Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kuban-Jankowska A, Sahu KK, Gorska-Ponikowska M, Tuszynski JA and Wozniak M: Inhibitory activity of iron chelators ATA and DFO on MCF-7 breast cancer cells and phos-phatases PTP1B and SHP2. Anticancer Res. 37:4799–4806. 2017.PubMed/NCBI | |
Wang YF, Zhang J, Su Y, Shen YY, Jiang DX, Hou YY, Geng MY, Ding J and Chen Y: G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 8:2742017. View Article : Google Scholar : PubMed/NCBI | |
Lemler DJ, Lynch ML, Tesfay L, Deng Z, Paul BT, Wang X, Hegde P, Manz DH, Torti SV and Torti FM: DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 19:252017. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Ren W, Chen T, Yinhua J, Li A, Yan K, Wu Y and Wu A: Recent advances in superparamagnetic iron oxide based nano-probes as multifunctional theranostic agents for breast cancer imaging and therapy. Curr Med Chem. 25:3001–3016. 2018. View Article : Google Scholar | |
Ridge CA, McErlean AM and Ginsberg MS: Epidemiology of lung cancer. Semin Intervent Radiol. 30:93–98. 2013. View Article : Google Scholar : | |
Wild P, Bourgkard E and Paris C: Lung cancer and exposure to metals: The epidemiological evidence. Methods Mol Biol. 472:139–167. 2009. View Article : Google Scholar | |
Brookes MJ, Boult J, Roberts K, Cooper BT, Hotchin NA, Matthews G, Iqbal T and Tselepis C: A role for iron in Wnt signalling. Oncogene. 27:966–975. 2008. View Article : Google Scholar | |
Wu KJ, Polack A and Dalla-Favera R: Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 283:676–679. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chanvorachote P and Luanpitpong S: Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol. 310:C728–C739. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee BJ, Kim B and Lee K: Air pollution exposure and cardiovascular disease. Toxicol Res. 30:71–75. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lovera-Leroux M, Crobeddu B, Kassis N, Petit PX, Janel N, Baeza-Squiban A and Andreau K: The iron component of particulate matter is antiapoptotic: A clue to the development of lung cancer after exposure to atmospheric pollutants? Biochimie. 118:195–206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bidoli E, Barbone F, Collarile P, Valent F, Zanier L, Daris F, Gini A, Birri S and Serraino D: Residence in proximity of an iron foundry and risk of lung cancer in the municipality of trieste, Italy, 1995-2009. Int J Environ Res Public Health. 12:9025–9035. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song MK, Chung JS, Seol YM, Shin HJ, Choi YJ and Cho GJ: Elevation of serum ferritin is associated with the outcome of patients with newly diagnosed multiple myeloma. Korean Korean J Intern Med. 24:368–373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Strasser-Weippl K and Ludwig H: Ferritin as prognostic marker in multiple myeloma patients undergoing autologous transplantation. Leuk Lymphoma. 55:2520–2524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G and Zhan F: Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 75:2211–2221. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JL, Lee D-H, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, Joung SY, Lee S-Y, Oh SC, et al: Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol. 37:9709–9719. 2016. View Article : Google Scholar : PubMed/NCBI | |
Timofeeva OA, Palechor-Ceron N, Li G, Yuan H, Krawczyk E, Zhong X, Liu G, Upadhyay G, Dakic A, Yu S, et al: Conditionally reprogrammed normal and primary tumor prostate epithelial cells: A novel patient-derived cell model for studies of human prostate cancer. Oncotarget. 8:22741–22758. 2017. View Article : Google Scholar : | |
Wachowius F, Attwater J and Holliger P: Nucleic acids: Function and potential for abiogenesis. Q Rev Biophys. 50:e42017. View Article : Google Scholar : PubMed/NCBI | |
Puig S, Ramos-Alonso L, Romero AM and Martínez-Pastor MT: The elemental role of iron in DNA synthesis and repair. Metallomics. 9:1483–1500. 2017. View Article : Google Scholar : PubMed/NCBI | |
Friedman JR and Nunnari J: Mitochondrial form and function. Nature. 505:335–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z and Sukhatme VP: Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway. Sci Rep. 7:45372017. View Article : Google Scholar : PubMed/NCBI | |
Dutkiewicz R and Nowak M: Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis. J Biol Inorg Chem. 23:569–579. 2018. View Article : Google Scholar | |
Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D'Agostino R Jr, Torti SV and Torti FM: An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 71:6728–6737. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mettert EL and Kiley PJ: Fe-S proteins that regulate gene expression. Biochim Biophys Acta. 1853:1284–1293. 2015. View Article : Google Scholar : | |
Zhang L, Reyes A and Wang X: The role of DNA repair in maintaining mitochondrial DNA stability. Adv Exp Med Biol. 1038:85–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YR and Zweier JL: Cardiac mitochondria and reactive oxygen species generation. Circ Res. 114:524–537. 2014. View Article : Google Scholar : PubMed/NCBI | |
Urra FA, Muñoz F, Lovy A and Cárdenas C: The mitochondrial complex(I)ty of cancer. Front Oncol. 7:1182017. View Article : Google Scholar : PubMed/NCBI | |
Bastian A, Matsuzaki S, Humphries KM, Pharaoh GA, Doshi A, Zaware N, Gangjee A and Ihnat MA: AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Lett. 388:149–157. 2017. View Article : Google Scholar | |
Bridges HR, Jones AJ, Pollak MN and Hirst J: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 462:475–487. 2014. View Article : Google Scholar : PubMed/NCBI | |
Esser L, Zhou F, Zhou Y, Xiao Y, Tang WK, Yu CA, Qin Z and Xia D: Hydrogen bonding to the substrate is not required for rieskeiron-sulfur protein docking to the quinol oxidation site of complex III. J Biol Chem. 291:25019–25031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Zhang R, Xia T, Hsu E, Cai Y, Gu Z and Hankinson O: Inhibitory effects of nitric oxide on invasion of human cancer cells. Cancer Lett. 257:274–282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 7:34084–34099. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oyedotun KS and Lemire BD: The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem. 279:9424–9431. 2004. View Article : Google Scholar | |
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M and Rao Z: Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 121:1043–1057. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Shestov AA, Worth AJ, Nath K, Nelson DS, Leeper DB, Glickson JD and Blair IA: Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem. 291:42–57. 2016. View Article : Google Scholar : | |
Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L and Neuzil J: Mitochondrial complex II, a novel target for anti-cancer agents. Biochim Biophys Acta. 1827:552–564. 2013. View Article : Google Scholar | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E and Joyce JA: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25:2465–2479. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar | |
Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun Y, Pan Z, Qian H and Xu W: Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biol. 37:12169–12180. 2016. View Article : Google Scholar : PubMed/NCBI | |
Torti SV and Torti FM: Cellular iron metabolism in prognosis and therapy of breast cancer. Crit Rev Oncog. 18:435–448. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duan X, He K, Li J, Cheng M, Song H, Liu J and Liu P: Tumor associated macrophages deliver iron to tumor cells via Lcn2. Int J Physiol Pathophysiol Pharmacol. 10:105–114. 2018.PubMed/NCBI | |
Mertens C, Mora J, Ören B, Grein S, Winslow S, Scholich K, Weigert A, Malmström P, Forsare C, Fernö M, et al: Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. OncoImmunology. 7:e14087512017. View Article : Google Scholar | |
Flower DR: The lipocalin protein family: A role in cell regulation. FEBS Lett. 354:7–11. 1994. View Article : Google Scholar : PubMed/NCBI | |
Laskar A, Eilertsen J, Li W and Yuan XM: SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem Biophys Res Commun. 441:737–742. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fearnhead HO, Vandenabeele P and Vanden Berghe T: How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 24:1991–1998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sheng X, Shan C, Liu J, Yang J, Sun B and Chen D: Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys Chem Chem Phys. 19:13153–13159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fanzani A and Poli M: Iron, oxidative damage and ferroptosis in rhabdomyosarcoma. Int J Mol Sci. 18:182017. | |
Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017.PubMed/NCBI | |
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ishii T, Sugita Y and Bannai S: Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol. 133:330–336. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J and Lv J: Sulfur protects Pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci. 18:182017. View Article : Google Scholar | |
Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W, et al: Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8:237–248. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Bindoli A: The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 44:255–276. 1987. View Article : Google Scholar : PubMed/NCBI | |
Chu FF: The human glutathione peroxidase genes GPX2, GPX3, and GPX4 map to chromosomes 14, 5, and 19, respectively. Cytogenet Cell Genet. 66:96–98. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, et al: Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 12:11355–11365. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z, Li D, Wu Y, Shang Y, Kong X, et al: Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 7:180–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD and Dixon SJ: p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22:569–575. 2018. View Article : Google Scholar : PubMed/NCBI |