Vitamin D and its low calcemic analogs modulate the anticancer properties of cisplatin and dacarbazine in the human melanoma A375 cell line
- Authors:
- Anna Piotrowska
- Justyna Wierzbicka
- Agnieszka Rybarczyk
- Robert C. Tuckey
- Andrzej T. Slominski
- Michał A. Żmijewski
-
Affiliations: Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland, School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia 6009, Australia, Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA - Published online on: February 25, 2019 https://doi.org/10.3892/ijo.2019.4725
- Pages: 1481-1495
This article is mentioned in:
Abstract
Piotrowska A, Wierzbicka J and Żmijewski MA: Vitamin D in the skin physiology and pathology. Acta Biochim Pol. 63:17–29. 2016. View Article : Google Scholar : PubMed/NCBI | |
Holick MF: Vitamin D: Evolutionary, physiological and health perspectives. Curr Drug Targets. 12:4–18. 2011. View Article : Google Scholar | |
Bikle DD: Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord. 13:3–19. 2012. View Article : Google Scholar | |
Samuel S and Sitrin MD: Vitamin D’s role in cell proliferation and differentiation. Nutr Rev. 66(Suppl 2): S116–S124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bikle DD: Vitamin D regulated keratinocyte differentiation. J Cell Biochem. 92:436–444. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kubis AM and Piwowar A: The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev. 24(Pt B): 126–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Janjetovic Z, Kim TK, Wasilewski P, Rosas S, Hanna S, Sayre RM, Dowdy JC, Li W and Tuckey RC: Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation. J Steroid Biochem Mol Biol. 148:52–63. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gordon-Thomson C, Gupta R, Tongkao-on W, Ryan A, Halliday GM and Mason RS: 1α,25 dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci. 11:1837–1847. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fedirko V, Bostick RM, Long Q, Flanders WD, McCullough ML, Sidelnikov E, Daniel CR, Rutherford RE and Shaukat A: Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: A randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 19:280–291. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang YJ, Teichert AE, Fong F, Oda Y and Bikle DD: 1α,25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the β-catenin pathway. J Steroid Biochem Mol Biol. 136:229–232. 2013. View Article : Google Scholar | |
Dixon KM, Deo SS, Wong G, Slater M, Norman AW, Bishop JE, Posner GH, Ishizuka S, Halliday GM, Reeve VE, et al: Skin cancer prevention: A possible role of 1,25dihydroxyvitamin D3 and its analogs. J Steroid Biochem Mol Biol. 97:137–143. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong G, Gupta R, Dixon KM, Deo SS, Choong SM, Halliday GM, Bishop JE, Ishizuka S, Norman AW, Posner GH, et al: 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J Steroid Biochem Mol Biol. 89–90:567–570. 2004. View Article : Google Scholar | |
Bikle DD, Jiang Y, Nguyen T, Oda Y and Tu CL: Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer. Front Physiol. 7:2962016. View Article : Google Scholar : PubMed/NCBI | |
Holick MF: Sunlight, ultraviolet radiation, vitamin D and skin cancer: How much sunlight do we need? Adv Exp Med Biol. 810:1–16. 2014.PubMed/NCBI | |
Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM, Mason RS, et al: On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol. 177:159–170. 2018. View Article : Google Scholar : | |
Yin L, Ordóñez-Mena JM, Chen T, Schöttker B, Arndt V and Brenner H: Circulating 25-hydroxyvitamin D serum concentration and total cancer incidence and mortality: A systematic review and meta-analysis. Prev Med. 57:753–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reichrath J, Zouboulis CC, Vogt T and Holick MF: Targeting the vitamin D endocrine system (VDES) for the management of inflammatory and malignant skin diseases: An historical view and outlook. Rev Endocr Metab Disord. 17:405–417. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brożyna AA, Jóźwicki W, Janjetovic Z and Slominski AT: Expression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1) decreases during melanoma progression. Hum Pathol. 44:374–387. 2013. View Article : Google Scholar | |
Brożyna AA, Jóźwicki W and Slominski AT: Decreased VDR expression in cutaneous melanomas as marker of tumor progression: New data and analyses. Anticancer Res. 34:2735–2743. 2014. | |
Ma Y, Trump DL and Johnson CS: Vitamin D in combination cancer treatment. J Cancer. 1:101–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krishnan AV, Swami S and Feldman D: Equivalent anticancer activities of dietary vitamin D and calcitriol in an animal model of breast cancer: Importance of mammary CYP27B1 for treatment and prevention. J Steroid Biochem Mol Biol. 136:289–295. 2013. View Article : Google Scholar : | |
Morris HA: Vitamin D activities for health outcomes. Ann Lab Med. 34:181–186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mitchell D: The relationship between vitamin D and cancer. Clin J Oncol Nurs. 15:557–560. 2011. View Article : Google Scholar : PubMed/NCBI | |
Welsh J, Wietzke JA, Zinser GM, Byrne B, Smith K and Narvaez CJ: Vitamin D-3 receptor as a target for breast cancer prevention. J Nutr. 133(Suppl): 2425S–2433S. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lamprecht SA and Lipkin M: Chemoprevention of colon cancer by calcium, vitamin D and folate: Molecular mechanisms. Nat Rev Cancer. 3:601–614. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bolland MJ, Grey A, Gamble GD and Reid IR: Calcium and vitamin D supplements and health outcomes: A reanalysis of the Women’s Health Initiative (WHI) limited-access data set. Am J Clin Nutr. 94:1144–1149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grant WB: 25-hydroxyvitamin D and breast cancer, colorectal cancer, and colorectal adenomas: Case-control versus nested case-control studies. Anticancer Res. 35:1153–1160. 2015.PubMed/NCBI | |
Płudowski P, Karczmarewicz E, Bayer M, Carter G, Chlebna-Sokół D, Czech-Kowalska J, Dębski R, Decsi T, Dobrzańska A, Franek E, et al: Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe - recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 64:319–327. 2013. View Article : Google Scholar : PubMed/NCBI | |
Skobowiat C, Oak AS, Kim TK, Yang CH, Pfeffer LM, Tuckey RC and Slominski AT: Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models. Oncotarget. 8:9823–9834. 2017. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Brożyna AA, Zmijewski MA, Jóźwicki W, Jetten AM, Mason RS, Tuckey RC and Elmets CA: Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and management. Lab Invest. 97:706–724. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Yu WD, Trump DL and Johnson CS: 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models. Cancer. 116:3294–3303. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rassnick KM, Muindi JR, Johnson CS, Balkman CE, Ramnath N, Yu WD, Engler KL, Page RL and Trump DL: In vitro and in vivo evaluation of combined calcitriol and cisplatin in dogs with spontaneously occurring tumors. Cancer Chemother Pharmacol. 62:881–891. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wietrzyk J, Nevozhay D, Filip B, Milczarek M and Kutner A: The antitumor effect of lowered doses of cytostatics combined with new analogs of vitamin D in mice. Anticancer Res. 27(5A): 3387–3398. 2007.PubMed/NCBI | |
Podgorska E, Drzal A, Matuszak Z, Swakon J, Slominski A, Elas M and Urbanska K: Calcitriol and Calcidiol Can Sensitize Melanoma Cells to Low(−)LET Proton Beam Irradiation. Int J Mol Sci. 19:192018. View Article : Google Scholar | |
Piotrowska A, Wierzbicka J, Ślebioda T, Woźniak M, Tuckey RC, Slominski AT and Żmijewski MA: Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes. Steroids. 110:49–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saw RP, Armstrong BK, Mason RS, Morton RL, Shannon KF, Spillane AJ, Stretch JR and Thompson JF: Adjuvant therapy with high dose vitamin D following primary treatment of melanoma at high risk of recurrence: A placebo controlled randomised phase II trial (ANZMTG 02.09 Mel-D). BMC Cancer. 14:7802014. View Article : Google Scholar : PubMed/NCBI | |
Pettijohn E, Martone B, Rademaker A and Kuzel T: A phase I study of high-dose calcitriol in combination with temozolomide for patients with metastatic melanoma. J Pers Med. 4:448–458. 2014. View Article : Google Scholar | |
Batus M, Waheed S, Ruby C, Petersen L, Bines SD and Kaufman HL: Optimal management of metastatic melanoma: Current strategies and future directions. Am J Clin Dermatol. 14:179–194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shah DJ and Dronca RS: Latest advances in chemotherapeutic, targeted, and immune approaches in the treatment of metastatic melanoma. Mayo Clin Proc. 89:504–519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arnold M, de Vries E, Whiteman DC, Jemal A, Bray F, Parkin DM and Soerjomataram I: Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int J Cancer. 143:1305–1314. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mattia G, Puglisi R, Ascione B, Malorni W, Carè A and Matarrese P: Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis. 9:1122018. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT and Carlson JA: Melanoma resistance: A bright future for academicians and a challenge for patient advocates. Mayo Clin Proc. 89:429–433. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, Travali S, McCubrey JA, Spandidos DA and Libra M: Emerging targeted therapies for melanoma treatment (Review). Int J Oncol. 45:516–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Johnson DB, Pollack MH and Sosman JA: Emerging targeted therapies for melanoma. Expert Opin Emerg Drugs. 21:195–207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Li W, Yi AK, Postlethwaite A and Tuckey RC: The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol. 144(Pt A): 28–39. 2014. View Article : Google Scholar | |
Slominski AT, Janjetovic Z, Fuller BE, Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J, Miller D, et al: Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS One. 5:e99072010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Slominski A, Tuckey RC, Janjetovic Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D and Li W: 20-hydroxyvitamin D3 inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Res. 32:739–746. 2012.PubMed/NCBI | |
Wasiewicz T, Szyszka P, Cichorek M, Janjetovic Z, Tuckey RC, Slominski AT and Zmijewski MA: Antitumor effects of vitamin d analogs on hamster and mouse melanoma cell lines in relation to melanin pigmentation. Int J Mol Sci. 16:6645–6667. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zmijewski MA, Li W, Chen J, Kim TK, Zjawiony JK, Sweatman TW, Miller DD and Slominski AT: Synthesis and photochemical transformation of 3β,21-dihydroxypregna-5,7-die n-20-one to novel secosteroids that show anti-melanoma activity. Steroids. 76:193–203. 2011. View Article : Google Scholar | |
Koul PA, Ahmad SH, Ahmad F, Jan RA, Shah SU and Khan UH: Vitamin d toxicity in adults: A case series from an area with endemic hypovitaminosis d. Oman Med J. 26:201–204. 2011. View Article : Google Scholar : PubMed/NCBI | |
Podgorska E, Sniegocka M, Mycinska M, Trybus W, Trybus E, Kopacz-Bednarska A, Wiechec O, Krzykawska-Serda M, Elas M, Krol T, et al: Acute hepatologic and nephrologic effects of calcitriol in Syrian golden hamster (Mesocricetus auratus). Acta Biochim Pol. 65:351–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN, Benson HA, Korik E, Janjetovic Z, Chen J, et al: In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 26:3901–3915. 2012. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Li W, Postlethwaite A, Tieu EW, Tang EK and Tuckey RC: Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep. 5:148752015. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK and Tuckey RC: Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol. 151:25–37. 2015. View Article : Google Scholar | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS and Doetsch PW: Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 8:e811622013. View Article : Google Scholar : PubMed/NCBI | |
Pourahmad J, Amirmostofian M, Kobarfard F and Shahraki J: Biological reactive intermediates that mediate dacarbazine cytotoxicity. Cancer Chemother Pharmacol. 65:89–96. 2009. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A and Tuckey RC: The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J. 272:4080–4090. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aykul S and Martinez-Hackert E: Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem. 508:97–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kalliokoski T, Kramer C, Vulpetti A and Gedeck P: Comparability of mixed IC50 data - a statistical analysis. PLoS One. 8:e610072013. View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Slominski AT, Janjetovic Z, Kim TK, Wright AC, Grese LN, Riney SJ, Nguyen MN and Tuckey RC: Novel vitamin D hydroxy-derivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Res. 32:3733–3742. 2012.PubMed/NCBI | |
Janjetovic Z, Brozyna AA, Tuckey RC, Kim TK, Nguyen MN, Jozwicki W, Pfeffer SR, Pfeffer LM and Slominski AT: High basal NF-κB activity in nonpigmented melanoma cells is associated with an enhanced sensitivity to vitamin D3 derivatives. Br J Cancer. 105:1874–1884. 2011. View Article : Google Scholar : PubMed/NCBI | |
Corazao-Rozas P, Guerreschi P, Jendoubi M, André F, Jonneaux A, Scalbert C, Garçon G, Malet-Martino M, Balayssac S, Rocchi S, et al: Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 4:1986–1998. 2013. View Article : Google Scholar : PubMed/NCBI | |
Florea AM and Büsselberg D: Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 3:1351–1371. 2011. View Article : Google Scholar | |
Le TYL, Ogawa M, Kizana E, Gunton JE and Chong JJH: Vitamin D Improves Cardiac Function After Myocardial Infarction Through Modulation of Resident Cardiac Progenitor Cells. Heart Lung Circ. 27:967–975. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Luo L, Tang Z and Meng X: Combined antitumor effects of 1,25 dihydroxy vitamin D3 and Notch inhibitor in liver cancer. Oncol Rep. 40:1515–1524. 2018.PubMed/NCBI | |
Corachan A, Ferrero H, Aguilar A, Garcia N, Monleon J, Faus A, Cervelló I and Pellicer A: Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/β-catenin pathway. Fertil Steril. 111:397–407. 2019. View Article : Google Scholar | |
Linos E, Swetter SM, Cockburn MG, Colditz GA and Clarke CA: Increasing burden of melanoma in the United States. J Invest Dermatol. 129:1666–1674. 2009. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP and Paus R: How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology. 159:1992–2007. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haussler MR, Jurutka PW, Mizwicki M and Norman AW: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 25:543–559. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moukayed M and Grant WB: Molecular link between vitamin D and cancer prevention. Nutrients. 5:3993–4021. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wacker M and Holick MF: Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 5:51–108. 2013. View Article : Google Scholar | |
Timerman D, McEnery-Stonelake M, Joyce CJ, Nambudiri VE, Hodi FS, Claus EB, Ibrahim N and Lin JY: Vitamin D deficiency is associated with a worse prognosis in metastatic melanoma. Oncotarget. 8:6873–6882. 2017. View Article : Google Scholar : | |
Caini S, Boniol M, Tosti G, Magi S, Medri M, Stanganelli I, Palli D, Assedi M, Marmol VD and Gandini S: Vitamin D and melanoma and non-melanoma skin cancer risk and prognosis: A comprehensive review and meta-analysis. Eur J Cancer. 50:2649–2658. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wyatt C, Lucas RM, Hurst C and Kimlin MG: Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness. PLoS One. 10:e01263942015. View Article : Google Scholar : PubMed/NCBI | |
Ogbah Z, Visa L, Badenas C, Ríos J, Puig-Butille JA, Bonifaci N, Guino E, Augé JM, Kolm I, Carrera C, et al: Serum 25-hydroxyvitamin D3 levels and vitamin D receptor variants in melanoma patients from the Mediterranean area of Barcelona. BMC Med Genet. 14:262013. View Article : Google Scholar : PubMed/NCBI | |
Sinnberg T, Levesque MP, Krochmann J, Cheng PF, Ikenberg K, Meraz-Torres F, Niessner H, Garbe C and Busch C: Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer. 17:592018. View Article : Google Scholar : PubMed/NCBI | |
Piotrowska A, Wierzbicka J, Nadkarni S, Brown G, Kutner A and Żmijewski MA: Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines. Int J Mol Sci. 17:172016. View Article : Google Scholar | |
Wasiewicz T, Piotrowska A, Wierzbicka J, Slominski AT and Zmijewski MA: Antiproliferative Activity of Non-Calcemic Vitamin D Analogs on Human Melanoma Lines in Relation to VDR and PDIA3 Receptors. Int J Mol Sci. 19:192018. View Article : Google Scholar | |
Field S and Newton-Bishop JA: Melanoma and vitamin D. Mol Oncol. 5:197–214. 2011. View Article : Google Scholar : PubMed/NCBI | |
Szyszka P, Zmijewski MA and Slominski AT: New vitamin D analogs as potential therapeutics in melanoma. Expert Rev Anticancer Ther. 12:585–599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Al-Qatati A and Aliwaini S: Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol Lett. 14:7993–7999. 2017. | |
Del Bello B, Toscano M, Moretti D and Maellaro E: Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells. PLoS One. 8:e572362013. View Article : Google Scholar | |
Kissel CK, Schadendorf D and Röckmann H: The altered apoptotic pathways in cisplatin and etoposide-resistant melanoma cells are drug specific. Melanoma Res. 16:527–535. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wangpaichitr M, Wu C, Li YY, Nguyen DJM, Kandemir H, Shah S, Chen S, Feun LG, Prince JS, Kuo MT, et al: Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer. Oncotarget. 8:49275–49292. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N and Rotter V: Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 34:190–198. 2013. View Article : Google Scholar | |
Ortiz de Montellano PR: Cytochrome P450-activated prodrugs. Future Med Chem. 5:213–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y and Cederbaum AI: Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci. 89:515–523. 2006. View Article : Google Scholar | |
Wierzbicka J, Piotrowska A and Zmijewski MA: The renaissance of vitamin D. Acta Biochim Pol. 61:679–686. 2014. View Article : Google Scholar | |
Box NF, Vukmer TO and Terzian T: Targeting p53 in melanoma. Pigment Cell Melanoma Res. 27:8–10. 2014. View Article : Google Scholar : | |
Slominski AT, Kim TK, Hobrath JV, Oak ASW, Tang EKY, Tieu EW, Li W, Tuckey RC and Jetten AM: Endogenously produced nonclassical vitamin D hydroxy-metabolites act as ‘biased’ agonists on VDR and inverse agonists on RORα and RORγ. J Steroid Biochem Mol Biol. 173:42–56. 2017. View Article : Google Scholar | |
Slominski AT, Kim TK, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey RC, et al: RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 28:2775–2789. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Marepally SR, Goh ESY, Cheng CYS, Janjetovic Z, Kim TK, Miller DD, Postlethwaite AE, Slominski AT, Tuckey RC, et al: Investigation of 20S-hydroxyvitamin D3 analogs and their 1α-OH derivatives as potent vitamin D receptor agonists with anti-inflammatory activities. Sci Rep. 8:14782018. View Article : Google Scholar | |
Lin Z, Chen H, Belorusova AY, Bollinger JC, Tang EKY, Janjetovic Z, Kim TK, Wu Z, Miller DD, Slominski AT, et al: 1α,20S-Dihydroxyvitamin D3 Interacts with Vitamin D Receptor: Crystal Structure and Route of Chemical Synthesis. Sci Rep. 7:101932017. View Article : Google Scholar | |
Slominski AT, Kim TK, Janjetovic Z, Brożyna AA, Żmijewski MA, Xu H, Sutter TR, Tuckey RC, Jetten AM and Crossman DK: Differential and Overlapping Effects of 20,23(OH)2 D3 Epidermal Keratinocytes: Identification of AhR as an Alternative and 1,25(OH)2D3 on Gene Expression in Human Receptor for 20,23(OH)2D3. Int J Mol Sci. 19:192018. View Article : Google Scholar | |
Kim TK, Wang J, Janjetovic Z, Chen J, Tuckey RC, Nguyen MN, Tang EK, Miller D, Li W and Slominski AT: Correlation between secosteroid-induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Mol Cell Endocrinol. 361:143–152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F and Riccardo F: Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs’ Revolution for Immunotherapy. Int J Mol Sci. 19:192018. View Article : Google Scholar | |
Kuzu OF, Nguyen FD, Noory MA and Sharma A: Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis. 8(Suppl 1): 81–94. 2015.PubMed/NCBI | |
Hoffman RM: Patient-Derived Orthotopic Xenograft (PDOX) Models of Melanoma. Int J Mol Sci. 18:182017. View Article : Google Scholar | |
Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chemielwski B, Nelson SD, et al: Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget. 9:11119–11125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski B, et al: Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget. 9:915–923. 2017. |