Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (Review)
- Authors:
- Chao Chen
- Xiaohuan Tang
- Yuanda Liu
- Jiaming Zhu
- Jingjing Liu
-
Affiliations: Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China - Published online on: March 18, 2019 https://doi.org/10.3892/ijo.2019.4751
- Pages: 1511-1524
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, et al: MAGIC Trial Participants: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 355:11–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Marin JJ, Al-Abdulla R, Lozano E, Briz O, Bujanda L, Banales JM and Macias RI: Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem. 16:318–334. 2016. View Article : Google Scholar | |
Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
Garrido M, Fonseca PJ, Vieitez JM, Frunza M and Lacave AJ: Challenges in first line chemotherapy and targeted therapy in advanced gastric cancer. Expert Rev Anticancer Ther. 14:887–900. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng T, Wang J, Chen X and Liu L: Role of microRNA in anticancer drug resistance. Int J Cancer. 126:2–10. 2010. View Article : Google Scholar | |
Dembinski JL and Krauss S: Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 26:611–623. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saxena M, Stephens MA, Pathak H and Rangarajan A: Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2:e1792011. View Article : Google Scholar : PubMed/NCBI | |
Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I and Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18:1131–1143. 2004. View Article : Google Scholar : PubMed/NCBI | |
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP and Chouaib S: New insights into the role of EMT in tumor immune escape. Mol Oncol. 11:824–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M and Ortiz-Sánchez E: Cancer stem cell impact on clinical oncology. World J Stem Cells. 10:183–195. 2018. View Article : Google Scholar | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Catalano V, Di Franco S, Iovino F, Dieli F, Stassi G and Todaro M: CD133 as a target for colon cancer. Expert Opin Ther Targets. 16:259–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abdullah LN and Chow EK: Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2:32013. View Article : Google Scholar : PubMed/NCBI | |
Eyre R, Harvey I, Stemke-Hale K, Lennard TW, Tyson-Capper A and Meeson AP: Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumour Biol. 35:9879–9892. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao J: Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther. 160:145–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sahu A, Singhal U and Chinnaiyan AM: Long noncoding RNAs in cancer: From function to translation. Trends Cancer. 1:93–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Zhang RW, Sui PC, He HT and Ding L: Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol. 21:10956–10981. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ayers D and Vandesompele J: Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes (Basel). 8:82017. View Article : Google Scholar | |
Farazi TA, Hoell JI, Morozov P and Tuschl T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
Riquelme I, Letelier P, Riffo-Campos AL, Brebi P and Roa JC: Emerging role of miRNAs in the drug resistance of gastric cancer. Int J Mol Sci. 17:4242016. View Article : Google Scholar : PubMed/NCBI | |
Matuszcak C, Haier J, Hummel R and Lindner K: MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol. 20:13658–13666. 2014. View Article : Google Scholar : PubMed/NCBI | |
Geisler S and Coller J: RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Delás MJ and Hannon GJ: lncRNAs in development and disease: From functions to mechanisms. Open Biol. 7:72017. View Article : Google Scholar | |
Heery R, Finn SP, Cuffe S and Gray SG: Long non-coding RNAs: Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel). 9. pp. 92017, View Article : Google Scholar | |
Yuan L, Xu B, Yuan P, Zhou J, Qin P, Han L, Chen G, Wang Z, Run Z, Zhao P, et al: Tumor-infiltrating CD4+ T cells in patients with gastric cancer. Cancer Cell Int. 17:1142017. View Article : Google Scholar | |
Wang LL, Zhang XH, Zhang X and Chu JK: MiR-30a increases cisplatin sensitivity of gastric cancer cells through suppressing epithelial-to-mesenchymal transition (EMT). Eur Rev Med Pharmacol Sci. 20:1733–1739. 2016.PubMed/NCBI | |
Archie V, Kauh J, Jones DV Jr, Cruz V, Karpeh MS Jr and Thomas CR Jr: Gastric cancer: Standards for the 21st century. Crit Rev Oncol Hematol. 57:123–131. 2006. View Article : Google Scholar : PubMed/NCBI | |
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang XL, Shi HJ, Wang JP, Tang HS and Cui SZ: MiR-218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened. Int J Clin Exp Pathol. 8:6397–6406. 2015.PubMed/NCBI | |
An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, Nie Y and Zhao Q: miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 6:e17662015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lu Q and Cai X: MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 587:3069–3075. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kondo T, Wakayama T, Naiki T, Matsumoto K and Sugimoto K: Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science. 294:867–870. 2001. View Article : Google Scholar : PubMed/NCBI | |
Özeş AR, Miller DF, Özeş ON, Fang F, Liu Y, Matei D, Huang T and Nephew KP: NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 35:5350–5361. 2016. View Article : Google Scholar | |
Lin CT, Lyu YL, Xiao H, Lin WH and Whang-Peng J: Suppression of gene amplification and chromosomal DNA integration by the DNA mismatch repair system. Nucleic Acids Res. 29:3304–3310. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ferguson DO and Alt FW: DNA double strand break repair and chromosomal translocation: Lessons from animal models. Oncogene. 20:5572–5579. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S and Paz-Ares L: Current challenges in cancer treatment. Clin Ther. 38:1551–1566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schlösser HA, Drebber U, Kloth M, Thelen M, Rothschild SI, Haase S, Garcia-Marquez M, Wennhold K, Berlth F, Urbanski A, et al: Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. OncoImmunology. 5:e11007892015. View Article : Google Scholar | |
Jabbour E, Kantarjian H and Cortes J: Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: An evolving treatment paradigm. Clin Lymphoma Myeloma Leuk. 15:323–334. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szakács G, Jakab K, Antal F and Sarkadi B: Diagnostics of multidrug resistance in cancer. Pathol Oncol Res. 4:251–257. 1998. View Article : Google Scholar | |
Tan B, Li Y, Zhao Q, Fan L and Wang D: ZNF139 increases multidrug resistance in gastric cancer cells by inhibiting miR-185. Biosci Rep. 38:382018. View Article : Google Scholar | |
Li Q, Wang JX, He YQ, Feng C, Zhang XJ, Sheng JQ and Li PF: MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 5:e11972014. View Article : Google Scholar : PubMed/NCBI | |
Zhang XL, Shi HJ, Wang JP, Tang HS, Wu YB, Fang ZY, Cui SZ and Wang LT: MicroRNA-218 is upregulated in gastric cancer after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy and increases chemosensitivity to cisplatin. World J Gastroenterol. 20:11347–11355. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng JF, Ma XQ, Wang LP and Wang W: MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol. 23:2337–2345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li G, Yang F, Gu S, Li Z and Xue M: MicroRNA-101 induces apoptosis in cisplatin-resistant gastric cancer cells by targeting VEGF-C. Mol Med Rep. 13:572–578. 2016. View Article : Google Scholar | |
Bao J, Xu Y, Wang Q, Zhang J, Li Z, Li D and Li J: miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed Pharmacother. 92:1030–1037. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Z, Zou R, Zong D, Shi Y, Chen J, Huang J, Zhu J, Chen L, Bao X, Liu Y, et al: miR-495 sensitizes MDR cancer cells to the combination of doxorubicin and taxol by inhibiting MDR1 expression. J Cell Mol Med. 21:1929–1943. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Li Z, Liu H, Zhou D, Fu A and Zhang E: MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem Biophys Res Commun. 479:91–96. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, Zhou L, Sun Y, Li M, Zhou J, et al: miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 33:3267–3276. 2014. View Article : Google Scholar | |
Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, et al: The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 7:538–549. 2016. View Article : Google Scholar : | |
Du X, Liu B, Luan X, Cui Q and Li L: miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Exp Ther Med. 15:599–605. 2018.PubMed/NCBI | |
Li C, Zou J, Zheng G and Chu J: miR-30a decreases multidrug resistance (MDR) of gastric cancer cells. Med Sci Monit. 22:4509–4515. 2016. View Article : Google Scholar : | |
Teng R, Hu Y, Zhou J, Seifer B, Chen Y, Shen J and Wang L: Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part vi a microRNA-107. PLoS One. 10:e01437162015. View Article : Google Scholar | |
Kim H, Choi H and Lee SK: Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett. 356:733–742. 2015. View Article : Google Scholar | |
Wu Q, Yang Z, Xia L, Nie Y, Wu K, Shi Y and Fan D: Methylation of miR-129-5p-CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 5:11552–11563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y and Zou X: Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci. 109:1044–1054. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Zhu M, Zhou X, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol. 37:1261–1269. 2016. View Article : Google Scholar | |
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep. 14:1742–1750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang Z, Yu M, Li L, Du G, Xiao W and Yang H: Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci. 14:16226–16239. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J and Zhu JS: miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget. 7:35284–35292. 2016.PubMed/NCBI | |
Fang Y, Shen H, Li H, Cao Y, Qin R, Long L, Zhu X, Xie C and Xu W: miR-106a confers cisplatin resistance by regulating PTEN/Akt pathway in gastric cancer cells. Acta Biochim Biophys Sin (Shanghai). 45:963–972. 2013. View Article : Google Scholar | |
Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A, et al: Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther. 17:400–406. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Li Y, Tan BB, Fan LQ, Yang PG and Tian Y: HIF-1α induces multidrug resistance in gastric cancer cells by inducing miR-27a. PLoS One. 10:e01327462015. View Article : Google Scholar | |
Zhao X, Yang L and Hu J: Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 30:552011. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Wang H, Liu R, Li H, Ge S, Bai M, Deng T, Yao G and Ba Y: miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J Cell Biochem. 115:549–556. 2014. View Article : Google Scholar | |
Zhou X, Jin W, Jia H, Yan J and Zhang G: MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res. 34:282015. View Article : Google Scholar : PubMed/NCBI | |
Eto K, Iwatsuki M, Watanabe M, Ishimoto T, Ida S, Imamura Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, et al: The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 136:1537–1545. 2015. View Article : Google Scholar | |
Yang SM, Huang C, Li XF, Yu MZ, He Y and Li J: miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology. 306:162–168. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin B, Liu Y and Wang H: Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem Biophys. 72:275–282. 2015. View Article : Google Scholar | |
Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, et al: The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 21:343–350. 2014. View Article : Google Scholar | |
Chen QN, Wei CC, Wang ZX and Sun M: Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. 8:1925–1936. 2017. | |
Shang C, Sun L, Zhang J, Zhao B, Chen X, Xu H and Huang B: Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget. 8:15393–15398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang D, Wu K, Zhao Q, Nie Y and Fan D: Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 34:3182–3193. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu W, He L, Li Y, Tan Y, Zhang F and Xu H: Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci Biotechnol Biochem. 82:456–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, Ende C, XiZhou L and Yanfan C: Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 16:1742017. View Article : Google Scholar : PubMed/NCBI | |
Fang Q, Chen X and Zhi X: Long Non-Coding RNA (LncRNA) Urothelial Carcinoma Associated 1 (UCA1) Increases Multi-Drug Resistance of Gastric Cancer via Downregulating miR-27b. Med Sci Monit. 22:3506–3513. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shang C, Guo Y, Zhang J and Huang B: Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother Pharmacol. 77:1061–1067. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lan WG, Xu DH, Xu C, Ding CL, Ning FL, Zhou YL, Ma LB, Liu CM and Han X: Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep. 36:263–270. 2016. View Article : Google Scholar : PubMed/NCBI | |
Florea AM and Büsselberg D: Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 3. pp. 1351–1371. 2011, View Article : Google Scholar | |
Zhang Y, Xu W, Ni P, Li A, Zhou J and Xu S: MiR-99a and MiR-491 regulate cisplatin resistance in human gastric cancer cells by targeting CAPNS1. Int J Biol Sci. 12:1437–1447. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, Niu B, Ji T, Han W and Li J: The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget. 9:2105–2119. 2017. | |
Wang Z and Ji F: Downregulation of microRNA-17-5p inhibits drug resistance of gastric cancer cells partially through targeting p21. Oncol Lett. 15:4585–4591. 2018.PubMed/NCBI | |
Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, Jiang Z, Feng L, Wang X, Zhou J, et al: Enolase 1 stimulates glycolysis to promote chemore-sistance in gastric cancer. Oncotarget. 8:47691–47708. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Shan Z, Li C and Yang L: MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomed Pharmacother. 86:450–456. 2017. View Article : Google Scholar | |
Li B, Wang W, Li Z, Chen Z, Zhi X, Xu J, Li Q, Wang L, Huang X, Wang L, et al: MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett. 410:212–227. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Cui H, Zhou Y, Yin D, Feng Y, Xin Q, Xu X, Liu W, Liu S and Zhang Q: miR-320a modulates cell growth and chemosensitivity via regulating ADAM10 in gastric cancer. Mol Med Rep. 16:9664–9670. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Nie Y, Wang H and Lin Y: MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 576:828–833. 2016. View Article : Google Scholar | |
You HY, Xie XM, Zhang WJ, Zhu HL and Jiang FZ: Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In Vitro Cell Dev Biol Anim. 52:857–863. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liang J, Liu YX, Wang Y, Yang XH, Luan BH, Zhang GL, Du J and Wu XH: miR-149 reverses cisplatin resistance of gastric cancer SGC7901/DDP cells by targeting FoxM1. Pharmazie. 71:640–643. 2016.PubMed/NCBI | |
Zhuang M, Shi Q, Zhang X, Ding Y, Shan L, Shan X, Qian J, Zhou X, Huang Z, Zhu W, et al: Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumour Biol. 36:2737–2745. 2015. View Article : Google Scholar | |
Wen L, Cheng F, Zhou Y and Yin C: MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 21:313–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Shan X, Zhou X, Qiu T, Zhu W, Ding Y, Shu Y and Liu P: miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2. Anticancer. Agents Med Chem. 14:884–891. 2014. View Article : Google Scholar | |
Wang T, Ge G, Ding Y, Zhou X, Huang Z, Zhu W, Shu Y and Liu P: MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J (Engl). 127:2357–2362. 2014. | |
He J, Qi H, Chen F and Cao C: MicroRNA-25 contributes to cisplatin resistance in gastric cancer cells by inhibiting forkhead box O3a. Oncol Lett. 14:6097–6102. 2017.PubMed/NCBI | |
Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G and Ba Y: Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther. 26:774–783. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jia X, Li N, Peng C, Deng Y, Wang J, Deng M, Lu M, Yin J, Zheng G, Liu H, et al: miR-493 mediated DKK1 down-regulation confers proliferation, invasion and chemo-resistance in gastric cancer cells. Oncotarget. 7:7044–7054. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z, et al: MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 7:24466–24482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen DD, Feng LC, Ye R, He YQ and Wang YD: miR-29b reduces cisplatin resistance of gastric cancer cell by targeting PI3K/Akt pathway. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 37:514–519. 2015.In Chinese. PubMed/NCBI | |
Zhou X, Su J, Zhu L and Zhang G: Helicobacter pylori modulates cisplatin sensitivity in gastric cancer by down-regulating miR-141 expression. Helicobacter. 19:174–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Guo X, Zhang D, Fan Y, Qin L, Dong S and Zhang L: Upregulated miR-132 in Lgr5+ gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinog. 56:2022–2034. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xue X, Hong H, Qin M, Zhou J, Sun Q, Liang H and Gao L: Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis via targeting SOX9. Oncotarget. 8:574–582. 2017. | |
Zhang Z, Kong Y, Yang W, Ma F, Zhang Y, Ji S, Ma EM, Liu H, Chen Y and Hua Y: Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting MET. Oncol Rep. 36:2391–2397. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Dong P, Li L, Ma X, Xu P, Zhu H, Wang Y, Yang B, Liu K, Liu J, et al: MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol Rep. 38:151–158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Guo F, Wang Y, Lv Y, Huo B, Wang L and Liu W: MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol Oncol Res. 20:93–98. 2014. View Article : Google Scholar | |
Chen Y, Zuo J, Liu Y, Gao H and Liu W: Inhibitory effects of miRNA-200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells. Chin J Cancer. 29:1006–1011. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Qin Y, Zhi Q, Wang J and Qin C: Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol. 107:2620–2629. 2018. View Article : Google Scholar | |
Yan J, Dang Y, Liu S, Zhang Y and Zhang G: LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol. 37:16345–16355. 2016. View Article : Google Scholar | |
Zhou DD, Liu XF, Lu CW, Pant OP and Liu XD: Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer. Cell Prolif. 50:502017. View Article : Google Scholar | |
Zhang XW, Bu P, Liu L, Zhang XZ and Li J: Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 462:227–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Bo P, Liu L, Zhang X and Li J: Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 92:580–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chunyan Q, Zhou Y, He Q, Ma Y, Ga Y and Wang X: BCAR4 increase cisplatin resistance and predicted poor survival in gastric cancer patients. Eur Rev Med Pharmacol Sci. 21:4064–4070. 2017.PubMed/NCBI | |
Hang Q, Sun R, Jiang C and Li Y: Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anticancer Drugs. 26:632–640. 2015.PubMed/NCBI | |
Li Y, Lv S, Ning H, Li K, Zhou X, Xv H and Wen H: Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother. 108:1775–1782. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li LQ, Pan D, Chen Q, Zhang SW, Xie DY, Zheng XL and Chen H: Sensitization of gastric cancer cells to 5-FU by microRNA-204 through targeting the TGFBR2-mediated epithelial to mesenchymal transition. Cell Physiol Biochem. 47:1533–1545. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Xie D and Ye S: Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 16:182017. View Article : Google Scholar : PubMed/NCBI | |
Korourian A, Roudi R, Shariftabrizi A and Madjd Z: MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells. Exp Biol Med (Maywood). 242:1842–1847. 2017. View Article : Google Scholar | |
Choi H and Lee SK: TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol. 162:369–377. 2017. View Article : Google Scholar | |
Xiong HL, Zhou SW, Sun AH, He Y, Li J and Yuan X: MicroRNA 197 reverses the drug resistance of fluorouracil induced SGC7901 cells by targeting mitogen activated protein kinase 1. Mol Med Rep. 12:5019–5025. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jian B, Li Z, Xiao D, He G, Bai L and Yang Q: Downregulation of microRNA-193-3p inhibits tumor proliferation migration and chemoresistance in human gastric cancer by regulating PTEN gene. Tumour Biol. 37:8941–8949. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Ye J, Wu D, Wu P, Chen Z, Chen J, Gao S and Huang J: LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer. 14:9322014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Qu X, Li C, Fan Y, Che X, Wang X, Cai Y, Hu X and Liu Y: miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour Biol. 36:2277–2285. 2015. View Article : Google Scholar | |
Shen Q, Yao Q, Sun J, Feng L, Lu H, Ma Y, Liu L, Wang F, Li J, Yue Y, et al: Downregulation of histone deacetylase 1 by microRNA-520h contributes to the chemotherapeutic effect of doxorubicin. FEBS Lett. 588:184–191. 2014. View Article : Google Scholar | |
Chen J, Zhou C, Li J, Xiang X, Zhang L, Deng J and Xiong J: miR-21-5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med. 41:1855–1866. 2018.PubMed/NCBI | |
Zou J and Xu Y: MicroRNA-140 inhibits cell proliferation in gastric cancer cell line HGC-27 by suppressing SOX4. Med Sci Monit. 22:2243–2252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Ren F, Zhang W, Liu G, Yang D, Hu J, Feng K and Feng Y: Regulation of BGC-823 cell sensitivity to adriamycin via miRNA-135a-5p. Oncol Rep. 32:2549–2556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y and Fan D: MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 434:688–694. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Lin Z, He Y, Pang X, Wang Y, Ponnusamy M, Ao X, Shan P, Tariq MA, Li P, et al: The long noncoding RNA D63785 regulates chemotherapy sensitivity in human gastric cancer by targeting miR-422a. Mol Ther Nucleic Acids. 12:405–419. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao B, Chen X, Wang Z, Xu H and Huang B: Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol Oncol Res. 24:109–113. 2018. View Article : Google Scholar | |
Cao W, Wei W, Zhan Z, Xie D, Xie Y and Xiao Q: Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int J Mol Med. 41:1958–1966. 2018.PubMed/NCBI | |
Cao W, Wei W, Zhan Z, Xie Y and Xiao Q: MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1. Oncol Rep. 35:2583–2591. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol. 29:384–391. 2012. View Article : Google Scholar | |
Zhu W, Shan X, Wang T, Shu Y and Liu P: miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 127:2520–2529. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J and Fan D: miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol. 69:723–731. 2012. View Article : Google Scholar | |
Yan LH, Chen ZN, Li-Li, Chen J, Wei WE, Mo XW, Qin YZ, Lin Y and Chen JS: miR-135a promotes gastric cancer progression and resistance to oxaliplatin. Oncotarget. 7:70699–70714. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Zheng Y, Han B and Dong X: Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother. 99:832–838. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yared JA and Tkaczuk KH: Update on taxane development: New analogs and new formulations. Drug Des Devel Ther. 6:371–384. 2012.PubMed/NCBI | |
Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P and Liu P: Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol. 71:1159–1171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Zhao Z, Xie L and Zhu J: MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget. 9:4886–4896. 2017. | |
Kang YK, Ryoo BY, Yoon S, Shen L, Lee J, Wei C, Zhou Y and Ryu MH: A Phase I study of cabazitaxel in patients with advanced gastric cancer who have failed prior chemotherapy (GASTANA). Cancer Chemother Pharmacol. 75:309–318. 2015. View Article : Google Scholar | |
Ju C, Wen Y, Zhang L, Wang Q, Xue L, Shen J and Zhang C: Neoadjuvant chemotherapy based on abraxane/human neutrophils cytopharmaceuticals with radiotherapy for gastric cancer. Small. 15:e18041912018. View Article : Google Scholar : PubMed/NCBI | |
Simón-Gracia L, Hunt H, Scodeller PD, Gaitzsch J, Braun GB, Willmore AM, Ruoslahti E, Battaglia G and Teesalu T: Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther. 15:670–679. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harada K, Mizrak Kaya D, Shimodaira Y and Ajani JA: Global chemotherapy development for gastric cancer. Gastric Cancer. 20(Suppl 1): 92–101. 2017. View Article : Google Scholar | |
Venturutti L, Cordo Russo RI, Rivas MA, Mercogliano MF, Izzo F, Oakley RH, Pereyra MG, De Martino M, Proietti CJ, Yankilevich P, et al: MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene. 35:6189–6202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abril-Rodriguez G and Ribas A: SnapShot: Immune checkpoint inhibitors. Cancer Cell. 31:848–848.e841. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kamath SD, Kalyan A and Benson AB III: Pembrolizumab for the treatment of gastric cancer. Expert Rev Anticancer Ther. 18:1177–1187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Smolle MA, Calin HN, Pichler M and Calin GA: Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 284:1952–1966. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Nduom EK, Kong LY, Hashimoto Y, Xu S, Gabrusiewicz K, Ling X, Huang N, Qiao W, Zhou S, et al: MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro Oncol. 18:639–648. 2016. View Article : Google Scholar : | |
Fujita Y, Yagishita S, Hagiwara K, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Tsuta K, Nokihara H, Tamura T, et al: The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther. 23:717–727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bullock MD, Silva AM, Kanlikilicer-Unaldi P, Filant J, Rashed MH, Sood AK, Lopez-Berestein G and Calin GA: Exosomal non-coding RNAs: Diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA. 1:53–68. 2015.PubMed/NCBI | |
Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, et al: Characterization of the 13q14 tumor suppressor locus in CLL: Identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res. 61:6640–6648. 2001.PubMed/NCBI | |
Bader AG, Brown D and Winkler M: The promise of microRNA replacement therapy. Cancer Res. 70:7027–7030. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gandellini P, Profumo V, Folini M and Zaffaroni N: MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets. 15:265–279. 2011. View Article : Google Scholar : PubMed/NCBI | |
van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA and Reesink HW: Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther. 43:102–113. 2016. View Article : Google Scholar | |
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang L, Wu Z, Sun R, Jin H, Ma J, Liu L, Ling R, Yi J, Wang L, et al: Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening. Med Oncol. 31:2982014. View Article : Google Scholar : PubMed/NCBI | |
Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, Choi IJ, Munroe DJ and Green JE: miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics. 4:792011. View Article : Google Scholar : PubMed/NCBI | |
Dehghanzadeh R, Jadidi-Niaragh F, Gharibi T and Yousefi M: MicroRNA-induced drug resistance in gastric cancer. Biomed Pharmacother. 74:191–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baumann V and Winkler J: miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonu-cleotide agents. Future Med Chem. 6:1967–1984. 2014. View Article : Google Scholar | |
Boudreau RL, Martins I and Davidson BL: Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 17:169–175. 2009. View Article : Google Scholar | |
Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W and Howell SB: Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 4:1595–1604. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, et al: Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 227:658–667. 2012. View Article : Google Scholar | |
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhu LP, Wang DD, Zhou SY, Yang SJ, Wang JY, Zhang Q, et al: Exosome: A novel mediator in drug resistance of cancer cells. Epigenomics. 10:1499–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shuwen H, Qing Z, Yan Z and Xi Y: Competitive endogenous RNA in colorectal cancer: A systematic review. Gene. 645:157–162. 2018. View Article : Google Scholar | |
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al: Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 29:653–668. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, et al: The progress of circular RNAs in various tumors. Am J Transl Res. 10:1571–1582. 2018.PubMed/NCBI | |
Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI |