1
|
Huson SM, Compston DA, Clark P and Harper
PS: A genetic study of von Recklinghausen neurofibromatosis in
south east Wales. I. Prevalence, fitness, mutation rate, and effect
of parental transmission on severity. J Med Genet. 26:704–711.
1989. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gutmann DH, Ferner RE, Listernick RH, Korf
BR, Wolters PL and Johnson KJ: Neurofibromatosis type 1. Nat Rev
Dis Primers. 3:170042017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dugoff L and Sujansky E: Neurofibromatosis
type 1 and pregnancy. Am J Med Genet. 66:7–10. 1996. View Article : Google Scholar : PubMed/NCBI
|
4
|
McLaughlin ME and Jacks T:
Neurofibromatosis type 1. Methods Mol Biol. 222:223–237.
2003.PubMed/NCBI
|
5
|
Posma E, Aalbers R, Kurniawan YS, van
Essen AJ, Peeters PM and van Loon AJ: Neurofibromatosis type I and
pregnancy: A fatal attraction? Development of malignant schwannoma
during pregnancy in a patient with neurofibromatosis type I. BJOG.
110:530–532. 2003.PubMed/NCBI
|
6
|
Jung-Testas I, Schumacher M, Bugnard H and
Baulieu EE: Stimulation of rat Schwann cell proliferation by
estradiol: Synergism between the estrogen and cAMP. Brain Res Dev
Brain Res. 72:282–290. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jung-Testas I, Schumacher M, Robel P and
Baulieu EE: Demonstration of progesterone receptors in rat Schwann
cells. J Steroid Biochem Mol Biol. 58:77–82. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pennanen P, Peltonen S, Kallionpää RA and
Peltonen J: The effect of estradiol, testosterone, and human
chorionic gonadotropin on the proliferation of Schwann cells with
NF1+/− or NF1−/− genotype derived from human
cutaneous neurofibromas. Mol Cell Biochem. 444:27–33. 2018.
View Article : Google Scholar
|
9
|
Gao W, Bohl CE and Dalton JT: Chemistry
and structural biology of androgen receptor. Chem Rev.
105:3352–3370. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gesundheit B, Parkin P, Greenberg M,
Baruchel S, Senger C, Kapelushnik J, Smith C and Klement GL: The
role of angiogenesis in the transformation of plexiform
neurofibroma into malignant peripheral nerve sheath tumors in
children with neurofibromatosis type 1. J Pediatr Hematol Oncol.
32:548–553. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Staser K, Yang FC and Clapp DW:
Pathogenesis of plexiform neurofibroma: Tumor-stromal/hematopoietic
interactions in tumor progression. Annu Rev Pathol. 7:469–495.
2012. View Article : Google Scholar
|
12
|
Staser K, Yang FC and Clapp DW: Mast cells
and the neurofibroma microenvironment. Blood. 116:157–164. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Needle MN, Cnaan A, Dattilo J, Chatten J,
Phillips PC, Shochat S, Sutton LN, Vaughan SN, Zackai EH, Zhao H,
et al: Prognostic signs in the surgical management of plexiform
neurofibroma: The Children's Hospital of Philadelphia experience,
1974-1994. J Pediatr. 131:678–682. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
15
|
Folkman J: New perspectives in clinical
oncology from angiogenesis research. Eur J Cancer. 32A:2534–2539.
1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Folkman J: Fighting cancer by attacking
its blood supply. Sci Am. 275:150–154. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fukumura D, Xavier R, Sugiura T, Chen Y,
Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, et al: Tumor
induction of VEGF promoter activity in stromal cells. Cell.
94:715–725. 1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Babovic-Vuksanovic D, Ballman K, Michels
V, McGrann P, Lindor N, King B, Camp J, Micic V, Babovic N, Carrero
X, et al: Phase II trial of pirfenidone in adults with
neurofibromatosis type 1. Neurology. 67:1860–1862. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gupta A, Cohen BH, Ruggieri P, Packer RJ
and Phillips PC: Phase I study of thalidomide for the treatment of
plexiform neurofibroma in neurofibromatosis 1. Neurology.
60:130–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Widemann BC, Dombi E, Gillespie A, Wolters
PL, Belasco J, Goldman S, Korf BR, Solomon J, Martin S, Salzer W,
et al: Phase 2 randomized, flexible crossover, double-blinded,
placebo-controlled trial of the farnesyltransferase inhibitor
tipifarnib in children and young adults with neurofibromatosis type
1 and progressive plexiform neurofibromas. Neuro Oncol. 16:707–718.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Widemann BC, Salzer WL, Arceci RJ, Blaney
SM, Fox E, End D, Gillespie A, Whitcomb P, Palumbo JS, Pitney A, et
al: Phase I trial and pharmacokinetic study of the
farnesyltransferase inhibitor tipifarnib in children with
refractory solid tumors or neurofibromatosis type I and plexiform
neurofibromas. J Clin Oncol. 24:507–516. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao Y, Wu K, Chen Y, Zhou J, Du C, Shi Q,
Xu S, Jia J, Tang X, Li F, et al: Beyond proliferation: KLF5
promotes angiogenesis of bladder cancer through directly regulating
VEGFA transcription. Oncotarget. 6:43791–43805. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hamilton SJ, Allard MF and Friedman JM:
Cardiac findings in an individual with neurofibromatosis 1 and
sudden death. Am J Med Genet. 100:95–99. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rasmussen SA, Yang Q and Friedman JM:
Mortality in neurofibromatosis 1: An analysis using U.S. death
certificates. Am J Hum Genet. 68:1110–1118. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Friedman JM, Arbiser J, Epstein JA,
Gutmann DH, Huot SJ, Lin AE, McManus B and Korf BR: Cardiovascular
disease in neurofibromatosis 1: Report of the NF1 Cardiovascular
Task Force. Genet Med. 4:105–111. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hamilton SJ and Friedman JM: Insights into
the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet.
58:341–344. 2000. View Article : Google Scholar
|
28
|
Ferrara N: VEGF and the quest for tumour
angiogenesis factors. Nat Rev Cancer. 2:795–803. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mashour GA, Ratner N, Khan GA, Wang HL,
Martuza RL and Kurtz A: The angiogenic factor midkine is aberrantly
expressed in NF1-deficient Schwann cells and is a mitogen for
neurofibroma-derived cells. Oncogene. 20:97–105. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hirota S, Nomura S, Asada H, Ito A, Morii
E and Kitamura Y: Possible involvement of c-kit receptor and its
ligand in increase of mast cells in neurofibroma tissues. Arch
Pathol Lab Med. 117:996–999. 1993.PubMed/NCBI
|
31
|
Mashour GA, Driever PH, Hartmann M,
Drissel SN, Zhang T, Scharf B, Felderhoff - ser U, Sakuma S,
Friedrich RE, Martuza RL, et al: Circulating growth factor levels
are associated with tumorigenesis in neurofibromatosis type 1. Clin
Cancer Res. 10:5677–5683. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ryan JJ, Klein KA, Neuberger TJ, Leftwich
JA, Westin EH, Kauma S, Fletcher JA, DeVries GH and Huff TF: Role
for the stem cell factor/KIT complex in Schwann cell neoplasia and
mast cell proliferation associated with neurofibromatosis. J
Neurosci Res. 37:415–432. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang FC, Ingram DA, Chen S, Hingtgen CM,
Ratner N, Monk KR, Clegg T, White H, Mead L, Wenning MJ, et al:
Neurofibromin-deficient Schwann cells secrete a potent migratory
stimulus for Nf1+/− mast cells. J Clin Invest.
112:1851–1861. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Munchhof AM, Li F, White HA, Mead LE,
Krier TR, Fenoglio A, Li X, Yuan J, Yang FC and Ingram DA:
Neurofibroma-associated growth factors activate a distinct
signaling network to alter the function of neurofibromin-deficient
endothelial cells. Hum Mol Genet. 15:1858–1869. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kawachi Y, Xu X, Ichikawa E, Imakado S and
Otsuka F: Expression of angiogenic factors in neurofibromas. Exp
Dermatol. 12:412–417. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kotsuji-Maruyama T, Imakado S, Kawachi Y
and Otsuka F: PDGF-BB induces MAP kinase phosphorylation and VEGF
expression in neurofibroma-derived cultured cells from patients
with neurofibromatosis 1. J Dermatol. 29:713–717. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kawachi Y, Maruyama H, Ishitsuka Y,
Fujisawa Y, Furuta J, Nakamura Y, Ichikawa E, Furumura M and Otsuka
F: NF1 gene silencing induces upregulation of vascular endothelial
growth factor expression in both Schwann and non-Schwann cells. Exp
Dermatol. 22:262–265. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Folkman J: Angiogenesis in cancer,
vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Folkman J: Seminars in Medicine of the
Beth Israel Hospital, Boston. Clinical applications of research on
angiogenesis. N Engl J Med. 333:1757–1763. 1995. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sheela S, Riccardi VM and Ratner N:
Angiogenic and invasive properties of neurofibroma Schwann cells. J
Cell Biol. 111:645–653. 1990. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim HA, Ling B and Ratner N: Nf1-deficient
mouse Schwann cells are angiogenic and invasive and can be induced
to hyper-proliferate: Reversion of some phenotypes by an inhibitor
of farnesyl protein transferase. Mol Cell Biol. 17:862–872. 1997.
View Article : Google Scholar : PubMed/NCBI
|
42
|
McLaughlin ME and Jacks T: Progesterone
receptor expression in neurofibromas. Cancer Res. 63:752–755.
2003.PubMed/NCBI
|
43
|
Sieveking DP, Lim P, Chow RW, Dunn LL, Bao
S, McGrath KC, Heather AK, Handelsman DJ, Celermajer DS and Ng MK:
A sex-specific role for androgens in angiogenesis. J Exp Med.
207:345–352. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu M, Wallace MR and Muir D: Nf1
haploinsufficiency augments angiogenesis. Oncogene. 25:2297–2303.
2006. View Article : Google Scholar
|
45
|
Harigai R, Sakai S, Nobusue H, Hirose C,
Sampetrean O, Minami N, Hata Y, Kasama T, Hirose T, Takenouchi T,
et al: Tranilast inhibits the expression of genes related to
epithelial-mesenchymal transition and angiogenesis in
neurofibromin-deficient cells. Sci Rep. 8:60692018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lin AL, McGill HC Jr and Shain SA: Hormone
receptors of the baboon cardiovascular system. Biochemical
characterization of myocardial cytoplasmic androgen receptors. Circ
Res. 49:1010–1016. 1981. View Article : Google Scholar : PubMed/NCBI
|
47
|
Horwitz KB and Horwitz LD: Canine vascular
tissues are targets for androgens, estrogens, progestins, and
glucocorticoids. J Clin Invest. 69:750–758. 1982. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mangelsdorf DJ, Thummel C, Beato M,
Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M,
Chambon P, et al: The nuclear receptor superfamily: The second
decade. Cell. 83:835–839. 1995. View Article : Google Scholar : PubMed/NCBI
|