1
|
Gallagher H and Suckling RJ: Diabetic
nephropathy: Where are we on the journey from pathophysiology to
treatment? Diabetes Obes Metab. 18:641–647. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dronavalli S, Duka I and Bakris GL: The
pathogenesis of diabetic nephropathy Nat Clin Pract Endocrinol
Metab. 4:444–452. 2008. View Article : Google Scholar
|
3
|
Ma R, Liu L, Jiang W, Yu Y and Song H:
FK506 ameliorates podocyte injury in type 2 diabetic nephropathy by
down-regulating TRPC6 and NFAT expression. Int J Clin Exp Pathol.
8:14063–14074. 2015.
|
4
|
Eremina V, Baelde HJ and Quaggin SE: Role
of the VEGF–a signaling pathway in the glomerulus: Evidence for
crosstalk between components of the glomerular filtration barrier.
Nephron, Physiol. 106:32–37. 2007. View Article : Google Scholar
|
5
|
Mundel P and Kriz W: Structure and
function of podocytes: An update. Anat Embryol (Berl). 192:385–397.
1995. View Article : Google Scholar
|
6
|
Mathieson PW: What has the immune system
got against the glomerular podocyte? Clin Exp Immunol. 134:1–5.
2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gordon S and Taylor PR: Monocyte and
macrophage heterogeneity Nat Rev Immunol. 5:953–964. 2005.
|
8
|
Chow F, Ozols E, Nikolic-Paterson DJ,
Atkins RC and Tesch GH: Macrophages in mouse type 2 diabetic
nephropathy: Correlation with diabetic state and progressive renal
injury. Kidney Int. 65:116–128. 2004. View Article : Google Scholar
|
9
|
Nguyen D, Ping F, Mu W, Hill P, Atkins RC
and Chadban SJ: Macrophage accumulation in human progressive
diabetic nephropathy. Nephrology (Carlton). 11:226–231. 2006.
View Article : Google Scholar
|
10
|
Tesch GH: Macrophages and diabetic
nephropathy. Semin Nephrol. 30:290–301. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Minton K: Macrophages: A transcription
factor to call their own. Nat Rev Immunol. 11:742011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hofkens W, Storm G, Berg WVD and Lent PV:
Inhibition of M1 macrophage activation in favour of M2
differentiation by liposomal targeting of glucocorticoids to the
synovial lining during experimental arthritis. Ann Rheum Dis.
70(Suppl 2): pp. 702011, View Article : Google Scholar
|
13
|
Gordon S: Alternative activation of
macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gertler AA and Cohen HY: SIRT6, a protein
with many faces. Biogerontology. 14:629–639. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tennen RI, Berber E and Chua KF:
Functional dissection of SIRT6: Identification of domains that
regulate histone deacetylase activity and chromatin localization.
Mech Ageing Dev. 131:185–192. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tennen RI, Bua DJ, Wright WE and Chua KF:
SIRT6 is required for maintenance of telomere position effect in
human cells. Nat Commun. 2:4332011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Beauharnois JM, Bolívar BE and Welch JT:
Sirtuin 6: A review of biological effects and potential therapeutic
properties. Mol Biosyst. 9:1789–1806. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Michishita E, McCord RA, Berber E, Kioi M,
Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL,
Barrett JC, et al: SIRT6 is a histone H3 lysine 9 deacetylase that
modulates telomeric chromatin. Nature. 452:492–496. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yuan J, Pu M, Zhang Z and Lou Z: Histone
H3-K56 acetylation is important for genomic stability in mammals.
Cell Cycle. 8:1747–1753. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mostoslavsky R, Chua KF, Lombard DB, Pang
WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy
MM, et al: Genomic instability and aging-like phenotype in the
absence of mammalian SIRT6. Cell. 124:315–329. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhong L, D'Urso A, Toiber D, Sebastian C,
Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD,
Nir T, et al: The histone deacetylase Sirt6 regulates glucose
homeostasis via Hif1alpha. Cell. 140:280–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu
G, Wei X, Zhang Y, Wang Z, Han H, et al: Histone deacetylase 4
selectively contributes to podocyte injury in diabetic nephropathy.
Kidney Int. 86:712–725. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun H, Tian J, Xian W, Xie T and Yang X:
Pentraxin-3 attenuates renal damage in diabetic nephropathy by
promoting M2 macrophage differentiation. Inflammation.
38:1739–1747. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Zanotto C, Hansen F, Galland F, Batassini
C, Federhen BC, da Silva VF, Leite MC, Nardin P and Gonçalves CA:
Glutamatergic alterations in STZ-induced diabetic rats are reversed
by Exendin-4. Mol Neurobiol. Aug 25–2018.Epub ahead of print.
View Article : Google Scholar : 2018.PubMed/NCBI
|
26
|
Nunes KP, de Oliveira AA, Szasz T,
Biancardi VC and Webb RC: Blockade of toll-like receptor 4
attenuates erectile dysfunction in diabetic rats. J Sex Med.
15:1235–1245. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang YC, Wu BH, Chu YL, Chang WC and Wu
MC: Effects of tempeh fermentation with Lactobacillus plantarum and
Rhizopus oligosporus on streptozotocin-induced type II diabetes
mellitus in rats. Nutrients. 10:102018. View Article : Google Scholar
|
28
|
Wu M, Yang Y, Wang M, Zeng F, Li Q, Liu W,
Guo S, He M, Wang Y, Huang J, et al: Exogenous pancreatic
kallikrein improves diabetic cardiomyopathy in
streptozotocin-induced diabetes. Front Pharmacol. 9:8552018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Inoki K, Mori H, Wang J, Suzuki T, Hong S,
Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, et al: mTORC1
activation in podocytes is a critical step in the development of
diabetic nephropathy in mice. J Clin Invest. 121:2181–2196. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang W, Wang Y, Long J, Wang J, Haudek SB,
Overbeek P, Chang BH, Schumacker PT and Danesh FR: Mitochondrial
fission triggered by hyperglycemia is mediated by ROCK1 activation
in podocytes and endothelial cells. Cell Metab. 15:186–200. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Casalena G, Krick S, Daehn I, Yu L, Ju W,
Shi S, Tsai SY, D'Agati V, Lindenmeyer M, Cohen CD, et al: Mpv17 in
mitochondria protects podocytes against mitochondrial dysfunction
and apoptosis in vivo and in vitro. Am J Physiol Renal Physiol.
306:F1372–F1380. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bechtel W, Helmstädter M, Balica J,
Hartleben B, Kiefer B, Hrnjic F, Schell C, Kretz O, Liu S, Geist F,
et al: Vps34 deficiency reveals the importance of endocytosis for
podocyte homeostasis. J Am Soc Nephrol. 24:727–743. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu N, Xu L, Shi Y and Zhuang S: Podocyte
autophagy: A potential therapeutic target to prevent the
progression of diabetic nephropathy. J Diabetes Res.
2017:35602382017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Inoue R, Asanuma K, Seki T, Nagase M and
Osafune K: New therapeutic insights for chronic kidney disease
provided by podocytology. Nihon Yakurigaku Zasshi. 143:27–33.
2014.In Japanese. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lennon R, Randles MJ and Humphries MJ: The
importance of podocyte adhesion for a healthy glomerulus. Front
Endocrinol (Lausanne). 5:1602014. View Article : Google Scholar
|
36
|
Kestilä M, Lenkkeri U, Männikkö M,
Lamerdin J, McCready 6P, Putaala H, Ruotsalainen V, Morita T,
Nissinen M, Herva R, et al: Positionally cloned gene for a novel
glomerular protein - nephrin - is mutated in congenital nephrotic
syndrome. Mol Cell. 1:575–582. 1998. View Article : Google Scholar
|
37
|
Wang Z, Liu J and Sun W: Effects of
asiaticoside on levels of podocyte cytoskeletal proteins and renal
slit diaphragm proteins in adriamycin-induced rat nephropathy. Life
Sci. 93:352–358. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bohle A, Wehrmann M, Bogenschütz O, Batz
C, Müller CA and Müller GA: The pathogenesis of chronic renal
failure in diabetic nephropathy. Investigation of 488 cases of
diabetic glomerulo-sclerosis. Pathol Res Pract. 187:251–259. 1991.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Furuta T, Saito T, Ootaka T, Soma J, Obara
K, Abe K and Yoshinaga K: The role of macrophages in diabetic
glomerulo-sclerosis. Am J Kidney Dis. 21:480–485. 1993. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yonemoto S, Machiguchi T, Nomura K,
Minakata T, Nanno M and Yoshida H: Correlations of tissue
macrophages and cytoskeletal protein expression with renal fibrosis
in patients with diabetes mellitus. Clin Exp Nephrol. 10:186–192.
2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo Y, Song Z, Zhou M, Yang Y, Zhao Y, Liu
B and Zhang X: Infiltrating macrophages in diabetic nephropathy
promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway.
Oncotarget. 8:53276–53287. 2017.PubMed/NCBI
|
42
|
Liu H, Dong H, Jiang L, Li Z and Ma X:
Bleomycin inhibits proliferation and induces apoptosis in TPC-1
cells through reversing M2-macrophages polarization. Oncol Lett.
16:3858–3866. 2018.PubMed/NCBI
|
43
|
Heusinkveld M, de Vos van Steenwijk PJ,
Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ, van Hall T and
van der Burg SH: M2 macrophages induced by prostaglandin E2 and
IL-6 from cervical carcinoma are switched to activated M1
macrophages by CD4+ Th1 cells. J Immunol. 187:1157–1165.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Assadi-Porter FM, Reiland H, Sabatini M,
Lorenzini L, Carnicelli V, Rogowski M, Selen Alpergin ES, Tonelli
M, Ghelardoni S, Saba A, et al: Metabolic reprogramming by
3-iodothyronamine (T1AM): A new perspective to reverse obesity
through co-regulation of sirtuin 4 and 6 expression. Int J Mol Sci.
19:192018. View Article : Google Scholar
|
45
|
Aditya R, Kiran AR, Varma DS, Vemuri R and
Gundamaraju R: A review on SIRtuins in diabetes. Curr Pharm Des.
23:2299–2307. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Feng J, Lu C, Dai Q, Sheng J and Xu M:
SIRT3 facilitates amniotic fluid stem cells to repair diabetic
nephropathy through protecting mitochondrial homeostasis by
modulation of mitophagy. Cell Physiol Biochem. 46:1508–1524. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Huynh FK, Hershberger KA and Hirschey MD:
Targeting sirtuins for the treatment of diabetes. Diabetes Manag
(Lond). 3:245–257. 2013. View Article : Google Scholar
|
48
|
Kitada M, Takeda A, Nagai T, Ito H,
Kanasaki K and Koya D: Dietary restriction ameliorates diabetic
nephropathy through anti-inflammatory effects and regulation of the
autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa)
rats: A model of type 2 diabetes. Exp Diabetes Res.
2011:9081852011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li C, Cai F, Yang Y, Zhao X, Wang C, Li J,
Jia Y, Tang J and Liu Q: Tetrahydroxystilbene glucoside ameliorates
diabetic nephropathy in rats: Involvement of SIRT1 and TGF-β1
pathway. Eur J Pharmacol. 649:382–389. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shang G, Gao P, Zhao Z, Chen Q, Jiang T,
Zhang N and Li H: 3,5-Diiodo-l-thyronine ameliorates diabetic
nephropathy in streptozotocin-induced diabetic rats. Biochim
Biophys Acta. 1832:674–684. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang X, Meng L, Zhao L, Wang Z, Liu H, Liu
G and Guan G: Resveratrol ameliorates hyperglycemia-induced renal
tubular oxidative stress damage via modulating the SIRT1/FOXO3a
pathway. Diabetes Res Clin Pract. 126:172–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Caton PW, Richardson SJ, Kieswich J,
Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness
MJ and Sugden MC: Sirtuin 3 regulates mouse pancreatic beta cell
function and is suppressed in pancreatic islets isolated from human
type 2 diabetic patients. Diabetologia. 56:1068–1077. 2013.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Morigi M, Perico L, Rota C, Longaretti L,
Conti S, Rottoli D, Novelli R, Remuzzi G and Benigni A: Sirtuin
3-dependent mitochondrial dynamic improvements protect against
acute kidney injury. J Clin Invest. 125:715–726. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Blasiak J, Arabski M, Krupa R, Wozniak K,
Zadrozny M, Kasznicki J, Zurawska M and Drzewoski J: DNA damage and
repair in type 2 diabetes mellitus. Mutat Res. 554:297–304. 2004.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Grindel A, Guggenberger B, Eichberger L,
Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H
and Wagner KH: Oxidative stress, DNA damage and DNA repair in
female patients with diabetes mellitus type 2. PLoS One.
11:e01620822016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kuang J, Chen L, Tang Q, Zhang J, Li Y and
He J: The role of Sirt6 in obesity and diabetes. Front Physiol.
9:1352018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kuang J, Zhang Y, Liu Q, Shen J, Pu S,
Cheng S, Chen L, Li H, Wu T, Li R, et al: Fat-specific Sirt6
ablation sensitizes mice to high-fat diet-induced obesity and
insulin resistance by inhibiting lipolysis. Diabetes. 66:1159–1171.
2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Xiong X, Zhang C, Zhang Y, Fan R, Qian X
and Dong XC: Fabp4-Cre-mediated Sirt6 deletion impairs adipose
tissue function and metabolic homeostasis in mice. J Endocrinol.
233:307–314. 2017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Xiao C, Wang RH, Lahusen TJ, Park O,
Bertola A, Maruyama T, Reynolds D, Chen Q, Xu X, Young HA, et al:
Progression of chronic liver inflammation and fibrosis driven by
activation of c-JUN signaling in Sirt6 mutant mice. J Biol Chem.
287:41903–41913. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Tarantino G, Finelli C, Scopacasa F,
Pasanisi F, Contaldo F, Capone D and Savastano S: Circulating
levels of sirtuin 4, a potential marker of oxidative metabolism,
related to coronary artery disease in obese patients suffering from
NAFLD, with normal or slightly increased liver enzymes. Oxid Med
Cell Longev. 2014:9206762014. View Article : Google Scholar : PubMed/NCBI
|
61
|
Huynh FK, Hu X, Lin Z, Johnson JD and
Hirschey MD: Loss of sirtuin 4 leads to elevated glucose- and
leucine-stimulated insulin levels and accelerated age-induced
insulin resistance in multiple murine genetic backgrounds. J
Inherit Metab Dis. 41:59–72. 2018. View Article : Google Scholar :
|
62
|
Zhang XL, Guo YF, Song ZX and Zhou M:
Vitamin D prevents podocyte injury via regulation of macrophage
M1/M2 phenotype in diabetic nephropathy rats. Endocrinology.
155:4939–4950. 2014. View Article : Google Scholar : PubMed/NCBI
|