Oncological role of HMGA2 (Review)
- Authors:
- Shizhen Zhang
- Qiuping Mo
- Xiaochen Wang
-
Affiliations: Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China, Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China - Published online on: August 13, 2019 https://doi.org/10.3892/ijo.2019.4856
- Pages: 775-788
This article is mentioned in:
Abstract
Bustin M and Reeves R: High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 54:35–100. 1996. View Article : Google Scholar : PubMed/NCBI | |
Goodwin GH, Sanders C and Johns EW: A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 38:14–19. 1973. View Article : Google Scholar : PubMed/NCBI | |
Bustin M: Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 26:152–153. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wood LJ, Maher JF, Bunton TE and Resar LM: The oncogenic properties of the HMG-I gene family. Cancer Res. 60:4256–4261. 2000.PubMed/NCBI | |
De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM and Fusco A: Regulation of microRNA expression by HMGA1 proteins. Oncogene. 28:1432–1442. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez Hoyos J, Fedele M, Battista S, Pentimalli F, Kruhoffer M, Arra C, Orntoft TF, Croce CM and Fusco A: Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: Tissue specificity of the HMGA1-dependent gene regulation. Cancer Res. 64:5728–5735. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fusco A and Fedele M: Roles of HMGA proteins in cancer. Nat Rev Cancer. 7:899–910. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, et al: Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene. 21:3190–3198. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM and Clore GM: The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol. 4:657–665. 1997. View Article : Google Scholar : PubMed/NCBI | |
Thanos D and Maniatis T: The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. 71:777–789. 1992. View Article : Google Scholar : PubMed/NCBI | |
Tallini G and Dal Cin P: HMGI(Y) and HMGI-C dysregulation: A common occurrence in human tumors. Adv Anat Pathol. 6:237–246. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rustighi A, Mantovani F, Fusco A, Giancotti V and Manfioletti G: Sp1 and CTF/NF-1 transcription factors are involved in the basal expression of the Hmgi-c proximal promoter. Biochem Biophys Res Commun. 265:439–447. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ayoubi TA, Jansen E, Meulemans SM and Van de Ven WJ: Regulation of HMGIC expression: An architectural transcription factor involved in growth control and development. Oncogene. 18:5076–5087. 1999. View Article : Google Scholar : PubMed/NCBI | |
Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH and Moustakas A: Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 174:175–183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lam K, Muselman A, Du R, Harada Y, Scholl AG, Yan M, Matsuura S, Weng S, Harada H and Zhang DE: Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood. 124:2203–2212. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E and Peter ME: Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 104:11400–11405. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee WY, Tzeng CC and Chou CY: Uterine leiomyosarcomas coexistent with cellular and atypical leiomyomata in a young woman during the treatment with luteinizing hormone-releasing hormone agonist. Gynecol Oncol. 52:74–79. 1994. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L and Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 32:5272–5282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Newman MA, Thomson JM and Hammond SM: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 14:1539–1549. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dröge P and Davey CA: Do cells let-7 determine stemness? Cell Stem Cell. 2:8–9. 2008. View Article : Google Scholar : PubMed/NCBI | |
Copley MR, Babovic S, Benz C, Knapp DJ, Beer PA, Kent DG, Wohrer S, Treloar DQ, Day C, Rowe K, et al: The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol. 15:916–925. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK and Rosner MR: RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. 33:3528–3537. 2014. View Article : Google Scholar : | |
Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, Wu S, Yu D, Huang Z, Liu F, et al: MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 5:99952015. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Song JY, Park H, Jeong JY, Kwon AY, Heo JH, Kang H, Kim G and An HJ: miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett. 356B:937–945. 2015. View Article : Google Scholar | |
Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F, Dasci F, Zwaan CM, den Boer ML, Verboon L, et al: miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia. 28:1022–1032. 2014. View Article : Google Scholar | |
Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 8:e10027512012. View Article : Google Scholar : PubMed/NCBI | |
Ye ZH and Gui DW: miR-539 suppresses proliferation and induces apoptosis in renal cell carcinoma by targeting high mobility group A2. Mol Med Rep. 17:5611–5618. 2018.PubMed/NCBI | |
Li T, Yang XD, Ye CX, Shen ZL, Yang Y, Wang B, Guo P, Gao ZD, Ye YJ, Jiang KW, et al: Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene. Cell Cycle. 16:224–231. 2017. View Article : Google Scholar : | |
Boque-Sastre R, Soler M, Oliveira-Mateos C, Portela A, Moutinho C, Sayols S, Villanueva A, Esteller M and Guil S: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci USA. 112:5785–5790. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Benson KF, Ashar HR and Chada K: Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 376:771–774. 1995. View Article : Google Scholar : PubMed/NCBI | |
Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, Elliott KS, Hackett R, Guiducci C, Shields B, et al Diabetes Genetics Initiative; Wellcome Trust Case Control Consortium: A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet. 39:1245–1250. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, et al: Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 20:250–258. 2018. View Article : Google Scholar | |
Zaidi MR, Okada Y and Chada KK: Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice. Cancer Res. 66:7453–7459. 2006. View Article : Google Scholar : PubMed/NCBI | |
Efanov A, Zanesi N, Coppola V, Nuovo G, Bolon B, Wernicle-Jameson D, Lagana A, Hansjuerg A, Pichiorri F and Croce CM: Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia. Blood Cancer J. 4:e2272014. View Article : Google Scholar : PubMed/NCBI | |
Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H and Van de Ven WJ: Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 10:436–444. 1995. View Article : Google Scholar : PubMed/NCBI | |
Dreux N, Marty M, Chibon F, Vélasco V, Hostein I, Ranchère-Vince D, Terrier P and Coindre JM: Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol. 23:1657–1666. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marquis M, Beaubois C, Lavallée VP, Abrahamowicz M, Danieli C, Lemieux S, Ahmad I, Wei A, Ting SB, Fleming S, et al: High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia. Blood Cancer J. 8:682018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu X, Li AY, Chen L, Lai L, Lin HH, Hu S, Yao L, Peng J, Loera S, et al: Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res. 17:2570–2580. 2011. View Article : Google Scholar : PubMed/NCBI | |
Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schäfer R and Tchernitsa O: HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 123:348–356. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Wei X, Zheng L, Zeng J, Liu H, Yang S and Tan H: Amplified HMGA2 promotes cell growth by regulating Akt pathway in AML. J Cancer Res Clin Oncol. 142:389–399. 2016. View Article : Google Scholar | |
Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Del Sal G, et al: Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol. 23:9104–9116. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Peng L and Seto E: Histone deacetylase 10 regulates the cell cycle G2/M phase transition via a novel Let-7-HMGA2-cyclin A2 pathway. Mol Cell Biol. 35:3547–3565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shaulian E and Karin M: AP-1 as a regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vallone D, Battista S, Pierantoni GM, Fedele M, Casalino L, Santoro M, Viglietto G, Fusco A and Verde P: Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J. 16:5310–5321. 1997. View Article : Google Scholar : PubMed/NCBI | |
Evan GI, Brown L, Whyte M and Harrington E: Apoptosis and the cell cycle. Curr Opin Cell Biol. 7:825–834. 1995. View Article : Google Scholar : PubMed/NCBI | |
Seville LL, Shah N, Westwell AD and Chan WC: Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr Cancer Drug Targets. 5:159–170. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S, Ciarmiello A, Pallante P, Arra C, Melillo RM, et al: HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell. 9:459–471. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yu KR, Park SB, Jung JW, Seo MS, Hong IS, Kim HS, Seo Y, Kang TW, Lee JY, Kurtz A, et al: HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res (Amst). 10:156–165. 2013. View Article : Google Scholar | |
Zhang H, Tang Z, Deng C, He Y, Wu F, Liu O and Hu C: HMGA2 is associated with the aggressiveness of tongue squamous cell carcinoma. Oral Dis. 23:255–264. 2017. View Article : Google Scholar | |
Xie H, Wang J, Jiang L, Geng C, Li Q, Mei D, Zhao L and Cao J: ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells. Toxicol In Vitro. 34:146–152. 2016. View Article : Google Scholar : PubMed/NCBI | |
Minshull J, Blow JJ and Hunt T: Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 56:947–956. 1989. View Article : Google Scholar : PubMed/NCBI | |
Liu WD, Tan L, Xiong XF, Liang YP and Tan H: The effects of lentivirus-mediated RNA interference silencing HMGA2 on proliferation and expressions of cyclin B2 and cyclin A2 in HL-60 cells. Zhonghua Xue Ye Xue Za Zhi. 33:448–452. 2012.in Chinese. PubMed/NCBI | |
Branzei D and Foiani M: Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 11:208–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Masai H, Tanaka T and Kohda D: Stalled replication forks: Making ends meet for recognition and stabilization. BioEssays. 32:687–697. 2010. View Article : Google Scholar : PubMed/NCBI | |
Courcelle J, Donaldson JR, Chow KH and Courcelle CT: DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 299:1064–1067. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U and Dröge P: Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep. 6:684–697. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iyama T and Wilson DM III: DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 12:620–636. 2013. View Article : Google Scholar | |
Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J and Bartek J: DNA damage response in human testes and testicular germ cell tumours: Biology and implications for therapy. Int J Androl. 30:282–291; discussion 291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shrivastav M, De Haro LP and Nickoloff JA: Regulation of DNA double-strand break repair pathway choice. Cell Res. 18:134–147. 2008. View Article : Google Scholar | |
Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 79:181–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, Tognetti M, Benner CW, Boulton SJ, Saghatelian A, et al: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 549:548–552. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meek K, Dang V and Lees-Miller SP: DNA-PK: The means to justify the ends? Adv Immunol. 99:33–58. 2008. View Article : Google Scholar | |
Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP and Chen DJ: Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol. 177:219–229. 2007. View Article : Google Scholar : PubMed/NCBI | |
Downs JA, Lowndes NF and Jackson SP: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 408:1001–1004. 2000. View Article : Google Scholar | |
Nick McElhinny SA, Snowden CM, McCarville J and Ramsden DA: Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol. 20:2996–3003. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li AY, Boo LM, Wang SY, Lin HH, Wang CC, Yen Y, Chen BP, Chen DJ and Ann DK: Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res. 69:5699–5706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kühne C, Tjörnhammar ML, Pongor S, Banks L and Simoncsits A: Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res. 31:7227–7237. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bullerdiek J and Rommel B: Comment re: HMGA2 is a negative regulator of DNA-PK pathway. Cancer Res. 70:1742author reply 1742. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cleynen I and Van de Ven WJ: The HMGA proteins: A myriad of functions (Review). Int J Oncol. 32:289–305. 2008.PubMed/NCBI | |
Boo LM, Lin HH, Chung V, Zhou B, Louie SG, O'Reilly MA, Yen Y and Ann DK: High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res. 65:6622–6630. 2005. View Article : Google Scholar : PubMed/NCBI | |
Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R, Croce CM, Fedele M and Fusco A: HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene. 30:3024–3035. 2011. View Article : Google Scholar : PubMed/NCBI | |
Natarajan S, Hombach-Klonisch S, Dröge P and Klonisch T: HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia. 15:263–280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD and Dröge P: HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res. 37:4371–4384. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, et al: HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol. 13:153–170. 2019. View Article : Google Scholar : | |
Alekseev S and Coin F: Orchestral maneuvers at the damaged sites in nucleotide excision repair. Cell Mol Life Sci. 72:2177–2186. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Laat WL, Jaspers NG and Hoeijmakers JH: Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785. 1999. View Article : Google Scholar : PubMed/NCBI | |
Westerveld A, Hoeijmakers JH, van Duin M, de Wit J, Odijk H, Pastink A, Wood RD and Bootsma D: Molecular cloning of a human DNA repair gene. Nature. 310:425–429. 1984. View Article : Google Scholar : PubMed/NCBI | |
Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J and Wisniewski JR: High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 31:6841–6851. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cotter TG: Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer. 9:501–507. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taylor RC, Cullen SP and Martin SJ: Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9:231–241. 2008. View Article : Google Scholar | |
Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan Z and Ai K: H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumour Biol. 35:9163–9169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Yang M, Chen Y, Yuan H, Li J, Cui X and Liu Z: Inducing apoptosis effect of caffeic acid 3,4-dihydroxy-phenethyl ester on the breast cancer cells. Tumour Biol. 35:11781–11789. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sionov RV and Haupt Y: The cellular response to p53: The decision between life and death. Oncogene. 18:6145–6157. 1999. View Article : Google Scholar : PubMed/NCBI | |
Meier P and Vousden KH: Lucifer's labyrinth - ten years of path finding in cell death. Mol Cell. 28:746–754. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pentimalli F, Dentice M, Fedele M, Pierantoni GM, Cito L, Pallante P, Santoro M, Viglietto G, Dal Cin P and Fusco A: Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res. 63:7423–7427. 2003.PubMed/NCBI | |
Kaur H, Hütt-Cabezas M, Weingart MF, Xu J, Kuwahara Y, Erdreich-Epstein A, Weissman BE, Eberhart CG and Raabe EH: The chromatin-modifying protein HMGA2 promotes atypical teratoid/rhabdoid cell tumorigenicity. J Neuropathol Exp Neurol. 74:177–185. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mansoori B, Mohammadi A, Shirjang S and Baradaran B: HMGI-C suppressing induces P53/caspase-9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle. 15:2585–2592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Dai M, Li Q, Wang Z, Lu Y and Song Z: HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer. 8:Jul 28–2017.Epub ahead of print. View Article : Google Scholar | |
Basolo F, Fiore L, Fusco A, Giannini R, Albini A, Merlo GR, Fontanini G, Conaldi PG and Toniolo A: Potentiation of the malignant phenotype of the undifferentiated ARO thyroid cell line by insertion of the bcl-2 gene. Int J Cancer. 81:956–962. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F, et al: Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci USA. 106:18351–18356. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318–1321. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM and Zhang GY: Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal. 19:1844–1856. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei CH, Wei LX, Lai MY, Chen JZ and Mo XJ: Effect of silencing of high mobility group A2 gene on gastric cancer MKN-45 cells. World J Gastroenterol. 19:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Danial NN and Korsmeyer SJ: Cell death: Critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Tian B, Ma W, Zhang N, Qiao Y, Li X, Zhang Y, Huang B and Lu J: A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells. Biosci Rep. 35:e001692015. View Article : Google Scholar | |
Fujikane R, Komori K, Sekiguchi M and Hidaka M: Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis. Sci Rep. 6:317142016. View Article : Google Scholar : PubMed/NCBI | |
Wang WY, Cao YX, Zhou X, Wei B, Zhan L and Fu LT: HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res. 10:3036–3052. 2018.PubMed/NCBI | |
Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, et al: Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology. 146:278–290. 2014. View Article : Google Scholar | |
Hayflick L: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–636. 1965. View Article : Google Scholar : PubMed/NCBI | |
d'Adda di Fagagna F: Living on a break: Cellular senescence as a DNA-damage response. Nat Rev Cancer. 8:512–522. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsumura T, Zerrudo Z and Hayflick L: Senescent human diploid cells in culture: Survival, DNA synthesis and morphology. J Gerontol. 34:328–334. 1979. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, et al: Programmed cell senescence during mammalian embryonic development. Cell. 155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, et al: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Artandi SE and DePinho RA: A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev. 10:39–46. 2000. View Article : Google Scholar : PubMed/NCBI | |
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bringold F and Serrano M: Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 35:317–329. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dimri GP, Itahana K, Acosta M and Campisi J: Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 20:273–285. 2000. View Article : Google Scholar | |
Sharpless NE: INK4a/ARF: A multifunctional tumor suppressor locus. Mutat Res. 576:22–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim WY and Sharpless NE: The regulation of INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–1307. 2004. View Article : Google Scholar : PubMed/NCBI | |
Collado M and Serrano M: The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer. 6:472–476. 2006. View Article : Google Scholar : PubMed/NCBI | |
Markowski DN, Bartnitzke S, Belge G, Drieschner N, Helmke BM and Bullerdiek J: Cell culture and senescence in uterine fibroids. Cancer Genet Cytogenet. 202:53–57. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nishino J, Kim I, Chada K and Morrison SJ: Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell. 135:227–239. 2008. View Article : Google Scholar : PubMed/NCBI | |
Markowski DN, Winter N, Meyer F, von Ahsen I, Wenk H, Nolte I and Bullerdiek J: p14Arf acts as an antagonist of HMGA2 in senescence of mesenchymal stem cells-implications for benign tumorigenesis. Genes Chromosomes Cancer. 50:489–498. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, et al: MicroRNA-10A* and microRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 112:152–164. 2013. View Article : Google Scholar | |
Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A, Palmieri D, Fedele M, Pierantoni GM, De Martino I, et al: Hmga1/Hmga2 double knock-out mice display a 'superpygmy' phenotype. Biol Open. 3:372–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Tian B, Liu L, Gao Y, Ma C, Mwichie N, Ma W, Han L, Huang B, Lu J, et al: Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells. J Genet Genomics. 40:391–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP and Lowe SW: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 126:503–514. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, et al: The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 8:e700242013. View Article : Google Scholar : PubMed/NCBI | |
Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien KA, et al: Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell. 42:36–49. 2011. View Article : Google Scholar : PubMed/NCBI | |
Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M and Cichowski K: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 10:459–472. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ and Wei JJ: Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology. 155:1510–1519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesen-chymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barrallo-Gimeno A and Nieto MA: The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 132:3151–3161. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial- mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kirschmann DA, Seftor EA, Nieva DR, Mariano EA and Hendrix MJ: Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat. 55:127–136. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhang S, Shan J, Hu Z, Liu X, Chen L, Ren X, Yao L, Sheng H, Li L, et al: Elevated HMGA2 expression is associated with cancer aggressiveness and predicts poor outcome in breast cancer. Cancer Lett. 376:284–292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Liu T, Zheng S, Gao X, Lu M, Sheyhidin I and Lu X: HMGA2 is down-regulated by microRNA let-7 and associated with epithelial-mesenchymal transition in oesophageal squamous cell carcinomas of Kazakhs. Histopathology. 65:408–417. 2014. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y and Nakao M: HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 174:854–868. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH and Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 283:33437–33446. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, D'Armiento J and Chada K: HMGA2 is a driver of tumor metastasis. Cancer Res. 73:4289–4299. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang X, Liu S and Li H, Yuan X, Feng B, Bai H, Zhao B, Chu Y and Li H: Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy. Int J Biochem Cell Biol. 70:149–160. 2016. View Article : Google Scholar | |
Zha L, Zhang J, Tang W, Zhang N, He M, Guo Y and Wang Z: HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci. 58:724–733. 2013. View Article : Google Scholar | |
Sakai D, Suzuki T, Osumi N and Wakamatsu Y: Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development. 133:1323–1333. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan EJ, Kahata K, Idås O, Thuault S, Heldin CH and Moustakas A: The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Res. 43:162–178. 2015. View Article : Google Scholar : | |
Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI | |
Singh I, Mehta A, Contreras A, Boettger T, Carraro G, Wheeler M, Cabrera-Fuentes HA, Bellusci S, Seeger W, Braun T, et al: Hmga2 is required for canonical WNT signaling during lung development. BMC Biol. 12:212014. View Article : Google Scholar : PubMed/NCBI | |
Queimado L, Lopes CS and Reis AM: WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 46:215–225. 2007. View Article : Google Scholar | |
Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B, et al: HMGA2-FOXL2 Axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res. 23:3461–3473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bodnar AG: Marine invertebrates as models for aging research. Exp Gerontol. 44:477–484. 2009. View Article : Google Scholar : PubMed/NCBI | |
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar : PubMed/NCBI | |
Harley CB: Telomerase and cancer therapeutics. Nat Rev Cancer. 8:167–179. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li AY, Lin HH, Kuo CY, Shih HM, Wang CC, Yen Y and Ann DK: High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol. 31:2605–2617. 2011. View Article : Google Scholar : PubMed/NCBI | |
Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S and Klonisch T: High mobility group A2 protects cancer cells against telomere dysfunction. Oncotarget. 7:12761–12782. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qian YW, Gao JH, Lu F and Zheng XD: The differences between adipose tissue derived stem cells and lipoma mesen-chymal stem cells in characteristics. Zhonghua Zheng Xing Wai Ke Za Zhi. 26:125–132. 2010.In Chinese. PubMed/NCBI | |
Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fojo T: Cancer, DNA repair mechanisms, and resistance to chemotherapy. J Natl Cancer Inst. 93:1434–1436. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marijon H, Dokmak S, Paradis V, Zappa M, Bieche I, Bouattour M, Raymond E and Faivre S: Epithelial-to-mesenchymal transition and acquired resistance to sunitinib in a patient with hepato-cellular carcinoma. J Hepatol. 54:1073–1078. 2011. View Article : Google Scholar | |
Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 71:1019–1028. 2011. View Article : Google Scholar | |
Dangi-Garimella S, Sahai V, Ebine K, Kumar K and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One. 8:e645662013. View Article : Google Scholar : PubMed/NCBI | |
Giannini G, Di Marcotullio L, Ristori E, Zani M, Crescenzi M, Scarpa S, Piaggio G, Vacca A, Peverali FA, Diana F, et al: HMGI(Y) and HMGI-C genes are expressed in neuroblastoma cell lines and tumors and affect retinoic acid responsiveness. Cancer Res. 59:2484–2492. 1999.PubMed/NCBI | |
Xia YY, Yin L, Tian H, Guo WJ, Jiang N, Jiang XS, Wu J, Chen M, Wu JZ and He X: HMGA2 is associated with epithelial-mesenchymal transition and can predict poor prognosis in nasopharyngeal carcinoma. OncoTargets Ther. 8:169–176. 2015. View Article : Google Scholar | |
Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Tropé C, Nesland JM and Thiery JP: The clinical role of epithelial-mesen-chymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 46:1–8. 2015. View Article : Google Scholar | |
Rogalla P, Drechsler K, Kazmierczak B, Rippe V, Bonk U and Bullerdiek J: Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: Relationship to histologic grade. Mol Carcinog. 19:153–156. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lee CT, Wu TT, Lohse CM and Zhang L: High-mobility group AT-hook 2: An independent marker of poor prognosis in intrahepatic cholangiocarcinoma. Hum Pathol. 45:2334–2340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A and Resar LM: HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 22:43–49. 2009. View Article : Google Scholar : | |
Yang GL, Zhang LH, Bo JJ, Hou KL, Cai X, Chen YY, Li H, Liu DM and Huang YR: Overexpression of HMGA2 in bladder cancer and its association with clinicopathologic features and prognosis HMGA2 as a prognostic marker of bladder cancer. Eur J Surg Oncol. 37:265–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zou Q, Xiong L, Yang Z, Lv F, Yang L and Miao X: Expression levels of HMGA2 and CD9 and its clinicopathological signifi-cances in the benign and malignant lesions of the gallbladder. World J Surg Oncol. 10:922012. View Article : Google Scholar | |
Lee CT, Zhang L, Mounajjed T and Wu TT: High mobility group AT-hook 2 is overexpressed in hepatoblastoma. Hum Pathol. 44:802–810. 2013. View Article : Google Scholar | |
Raskin L, Fullen DR, Giordano TJ, Thomas DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB: Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, et al: Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 22:431–441. 2009. View Article : Google Scholar : PubMed/NCBI | |
Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S and Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: A novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 47:56–63. 2008. View Article : Google Scholar | |
Zhang S, Zhang H and Yu L: HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med. 7:3226–3239. 2018. View Article : Google Scholar : | |
Na N, Si T, Huang Z, Miao B, Hong L, Li H and Qiu J and Qiu J: High expression of HMGA2 predicts poor survival in patients with clear cell renal cell carcinoma. OncoTargets Ther. 9:7199–7205. 2016. View Article : Google Scholar | |
Günther K, Foraita R, Friemel J, Günther F, Bullerdiek J, Nimzyk R, Markowski DN, Behrens T and Ahrens W: The stem cell factor HMGA2 is expressed in non-HPV-associated head and neck squamous cell carcinoma and predicts patient survival of distinct subsites. Cancer Epidemiol Biomarkers Prev. 26:197–205. 2017. View Article : Google Scholar | |
Mito JK, Agoston AT, Dal Cin P and Srivastava A: Prevalence and significance of HMGA2 expression in oesophageal adeno-carcinoma. Histopathology. 71:909–917. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sarhadi VK, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J, Karjalainen A, Knuutila S and Anttila S: Increased expression of high mobility group A proteins in lung cancer. J Pathol. 209:206–212. 2006. View Article : Google Scholar : PubMed/NCBI | |
Di Cello F, Hillion J, Hristov A, Wood LJ, Mukherjee M, Schuldenfrei A, Kowalski J, Bhattacharya R, Ashfaq R and Resar LM: HMGA2 participates in transformation in human lung cancer. Mol Cancer Res. 6:743–750. 2008. View Article : Google Scholar : PubMed/NCBI | |
Strell C, Norberg KJ, Mezheyeuski A, Schnittert J, Kuninty PR, Moro CF, Paulsson J, Schultz NA, Calatayud D, Löhr JM, et al: Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. Br J Cancer. 117:65–77. 2017. View Article : Google Scholar : PubMed/NCBI | |
Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K and Mori M: Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 14:2334–2340. 2008. View Article : Google Scholar : PubMed/NCBI | |
Berlingieri MT, Manfioletti G, Santoro M, Bandiera A, Visconti R, Giancotti V and Fusco A: Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol Cell Biol. 15:1545–1553. 1995. View Article : Google Scholar : PubMed/NCBI |