1
|
Broccoli A and Zinzani PL: Peripheral
T-cell lymphoma, not otherwise specified. Blood. 129:1103–1112.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Said J and Pinter-Brown L: Clinical and
pathological diagnosis of peripheral T-cell lymphoma and emerging
treatment options: A case-based discussion. Clin Adv Hematol Oncol.
7 (Suppl)(S1): S4–13. S152009.
|
3
|
Bisig B, Gaulard P and de Leval L: New
biomarkers in T-cell lymphomas. Best Pract Res Clin Haematol.
25:13–28. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Boddicker RL, Razidlo GL, Dasari S, Zeng
Y, Hu G, Knudson RA, Greipp PT, Davila JI, Johnson SH, Porcher JC,
et al: Integrated mate-pair and RNA sequencing identifies novel,
targetable gene fusions in peripheral T-cell lymphoma. Blood.
128:1234–1245. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sandell RF, Boddicker RL and Feldman AL:
Genetic landscape and classification of peripheral T cell
lymphomas. Curr Oncol Rep. 19:282017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Streubel B, Vinatzer U, Willheim M,
Raderer M and Chott A: Novel t(5;9)(q33;q22) fuses ITK to SYK in
unspecified peripheral T-cell lymphoma. Leukemia. 20:313–318. 2006.
View Article : Google Scholar
|
7
|
Bach MP, Hug E, Werner M, Holch J,
Sprissler C, Pechloff K, Zirlik K, Zeiser R, Dierks C, Ruland J and
Jumaa H: Premature terminal differentiation protects from
deregulated lymphocyte activation by ITK-Syk. J Immunol.
192:1024–1033. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang Y, Moreau A, Dupuis J, Streubel B,
Petit B, Le Gouill S, Martin-Garcia N, Copie-Bergman C, Gaillard F,
Qubaja M, et al: Peripheral T-cell lymphomas with a follicular
growth pattern are derived from follicular helper T cells (TFH) and
may show overlapping features with angioimmunoblastic T-cell
lymphomas. Am J Surg Pathol. 33:682–690. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Attygalle AD, Feldman AL and Dogan A:
ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J
Surg Pathol. 37:1456–1457. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fathi NN, Mohammad DK, Görgens A,
Andaloussi SE, Zain R, Nore BF and Smith CIE:
Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3
phosphorylation and CD69 expression. Biochem Biophys Res Commun.
504:749–752. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Andreotti AH, Schwartzberg PL, Joseph RE
and Berg LJ: T-cell signaling regulated by the Tec family kinase,
Itk. Cold Spring Harb Perspect Biol. 2:a0022872010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Prince AL, Yin CC, Enos ME, Felices M and
Berg LJ: The Tec kinases Itk and Rlk regulate conventional versus
innate T-cell development. Immunol Rev. 228:115–131. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Rickert RC: New insights into pre-BCR and
BCR signalling with relevance to B cell malignancies. Nat Rev
Immunol. 13:578–591. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tsang E, Giannetti AM, Shaw D, Dinh M, Tse
JK, Gandhi S, Ho H, Wang S, Papp E and Bradshaw JM: Molecular
mechanism of the Syk activation switch. J Biol Chem.
283:32650–32659. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hussain A, Faryal R, Nore BF, Mohamed AJ
and Smith CI: Phosphatidylinositol-3-kinase-dependent
phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK
fusion-protein. Biochem Biophys Res Commun. 390:892–896. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hussain A, Mohammad DK, Gustafsson MO,
Uslu M, Hamasy A, Nore BF, Mohamed AJ and Smith CI: Signaling of
the ITK (IL2-inducible T-cell kinase)-SYK fusion kinase is
dependent on adapter SLP-76 (SH2 domain-containing leukocyte
protein of 76 kD) and on the adapter function of the kinases
SYK/ZAP70 (zeta-chain [TCR] associated protein kinase 70 kD). J
Biol Chem. 288:7338–7350. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dierks C, Adrian F, Fisch P, Ma H, Maurer
H, Herchenbach D, Forster CU, Sprissler C, Liu G, Rottmann S, et
al: The ITK-SYK fusion oncogene induces a T-cell
lymphoproliferative disease in mice mimicking human disease. Cancer
Res. 70:6193–6204. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pechloff K, Holch J, Ferch U, Schweneker
M, Brunner K, Kremer M, Sparwasser T, Quintanilla-Martinez L,
Zimber-Strobl U, Streubel B, et al: The fusion kinase ITK-SYK
mimics a T cell receptor signal and drives oncogenesis in
conditional mouse models of peripheral T cell lymphoma. J Exp Med.
207:1031–1044. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
20
|
Kanehisa M, Sato Y, Kawashima M, Furumichi
M and Tanabe M: KEGG as a reference resource for gene and protein
annotation. Nucleic Acids Res. 44:D457–D462. 2016. View Article : Google Scholar :
|
21
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar
|
22
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen KT, Hour MJ, Tsai SC, Chung JG, Kuo
SC, Lu CC, Chiu YJ, Chuang YH and Yang JS: The novel synthesized
6-fluoro- (3-fluorophenyl)-4-(3-methoxyanilino)quinazoline (LJJ-10)
compound exhibits anti-metastatic effects in human osteosarcoma U-2
OS cells through targeting insulin-like growth factor-I receptor.
Int J Oncol. 39:611–619. 2011.PubMed/NCBI
|
25
|
Liao CL, Lai KC, Huang AC, Yang JS, Lin
JJ, Wu SH, Gibson Wood W, Lin JG and Chung JG: Gallic acid inhibits
migration and invasion in human osteosarcoma U-2 OS cells through
suppressing the matrix metalloproteinase-2/-9, protein kinase B
(PKB) and PKC signaling pathways. Food Chem Toxicol. 50:1734–1740.
2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Khokhlova ON, Tukhovskaya EA, Kravchenko
IN, Sadovnikova ES, Pakhomova IA, Kalabina EA, Lobanov AV,
Shaykhutdinova ER, Ismailova AM and Murashev AN: Using
Tiletamine-Zolazepam-Xylazine anesthesia compared to
CO2-inhalation for terminal clinical chemistry,
hematology, and coagulation analysis in mice. J Pharmacol Toxicol
Methods. 84:11–19. 2017. View Article : Google Scholar
|
27
|
Rigby S, Huang Y, Streubel B, Chott A, Du
MQ, Turner SD and Bacon CM: The lymphoma-associated fusion tyrosine
kinase ITK-SYK requires pleckstrin homology domain-mediated
membrane localization for activation and cellular transformation. J
Biol Chem. 284:26871–26881. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Eißmann M, Melzer IM, Fernandez SB, Michel
G, Hrabě de Angelis M, Hoefler G, Finkenwirth P, Jauch A, Schoell
B, Grez M, et al: Overexpression of the anti-apoptotic protein AVEN
contributes to increased malignancy in hematopoietic neoplasms.
Oncogene. 32:2586–2591. 2013. View Article : Google Scholar
|
29
|
Hekmatnejad M, Conwell S, Lok SM, Kutach
A, Shaw D, Fang E and Swinney DC: Insights into kinetic mechanism
of Janus kinase 3 and its inhibition by tofacitinib. Arch Biochem
Biophys. 612:22–34. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
O'Shea JJ, Schwartz DM, Villarino AV,
Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: Impact
on human disease and therapeutic intervention. Annu Rev Med.
66:311–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Goll GL and Kvien TK: New-generation JAK
inhibitors: How selective can they be? Lancet. 391:2477–2478. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ross JA, Spadaro M, Rosado DC, Cavallo F,
Kirken RA and Pericle F: Inhibition of JAK3 with a novel, selective
and orally active small molecule induces therapeutic response in
T-cell malignancies. Leukemia. 28:941–944. 2014. View Article : Google Scholar
|
33
|
Kwatra SG: The role of Jak3 signaling in
IL-17 expression in malignant cutaneous T-cell lymphoma. J Invest
Dermatol. 131:1954–1956. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cornejo MG, Kharas MG, Werneck MB, Le Bras
S, Moore SA, Ball B, Beylot-Barry M, Rodig SJ, Aster JC, Lee BH, et
al: Constitutive JAK3 activation induces lymphoproliferative
syndromes in murine bone marrow transplantation models. Blood.
113:2746–2754. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cornejo MG, Boggon TJ and Mercher T: JAK3:
A two-faced player in hematological disorders. Int J Biochem Cell
Biol. 41:2376–2379. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tomita M, Kawakami H, Uchihara JN,
Okudaira T, Masuda M, Matsuda T, Tanaka Y, Ohshiro K and Mori N:
Inhibition of constitutively active Jak-Stat pathway suppresses
cell growth of human T-cell leukemia virus type 1-infected T-cell
lines and primary adult T-cell leukemia cells. Retrovirology.
3:222006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Krejsgaard T, Vetter-Kauczok CS, Woetmann
A, Lovato P, Labuda T, Eriksen KW, Zhang Q, Becker JC and Ødum N:
Jak3- and JNK-dependent vascular endothelial growth factor
expression in cutaneous T-cell lymphoma. Leukemia. 20:1759–1766.
2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lauenborg B, Christensen L, Ralfkiaer U,
Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum
LM, Zhang Q, et al: Malignant T cells express lymphotoxin α and
drive endothelial activation in cutaneous T cell lymphoma.
Oncotarget. 6:15235–15249. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yan J, Li B, Lin B, Lee PT, Chung TH, Tan
J, Bi C, Lee XT, Selvarajan V, Ng SB, et al: EZH2 phosphorylation
by JAK3 mediates a switch to noncanonical function in natural
killer/T-cell lymphoma. Blood. 128:948–958. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Neumann M, Vosberg S, Schlee C, Heesch S,
Schwartz S, Gökbuget N, Hoelzer D, Graf A, Krebs S, Bartram I, et
al: Mutational spectrum of adult T-ALL. Oncotarget. 6:2754–2766.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Stengel A, Kern W, Zenger M, Perglerová K,
Schnittger S, Haferlach T and Haferlach C: Genetic characterization
of T-PLL reveals two major biologic subgroups and JAK3 mutations as
prognostic marker. Genes Chromosomes Cancer. 55:82–94. 2016.
View Article : Google Scholar
|
42
|
Wu AY, Yang HC, Lin CM, Wu BD, Qu QS,
Zheng YH, Wei H, Mei XQ, Zeng ZH and Ma XD: The transcriptome study
of subtype M2 acute myeloblastic leukemia. Cell Biochem Biophys.
72:653–656. 2015. View Article : Google Scholar
|
43
|
Degryse S, de Bock CE, Cox L, Demeyer S,
Gielen O, Mentens N, Jacobs K, Geerdens E, Gianfelici V, Hulselmans
G, et al: JAK3 mutants transform hematopoietic cells through JAK1
activation, causing T-cell acute lymphoblastic leukemia in a mouse
model. Blood. 124:3092–3100. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Jeong EG, Kim MS, Nam HK, Min CK, Lee S,
Chung YJ, Yoo NJ and Lee SH: Somatic mutations of JAK1 and JAK3 in
acute leukemias and solid cancers. Clin Cancer Res. 14:3716–3721.
2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Waldmann TA and Chen J: Disorders of the
JAK/STAT pathway in T cell lymphoma pathogenesis: Implications for
immunotherapy. Annu Rev Immunol. 35:533–550. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kimura H, Karube K, Ito Y, Hirano K,
Suzuki M, Iwata S and Seto M: Rare occurrence of JAK3 mutations in
natural killer cell neoplasms in Japan. Leuk Lymphoma. 55:962–963.
2014. View Article : Google Scholar
|
47
|
Lee S, Park HY, Kang SY, Kim SJ, Hwang J,
Lee S, Kwak SH, Park KS, Yoo HY, Kim WS, et al: Genetic alterations
of JAK/STAT cascade and histone modification in extranodal
NK/T-cell lymphoma nasal type. Oncotarget. 6:17764–17776.
2015.PubMed/NCBI
|
48
|
Lindemann MJ, Benczik M and Gaffen SL:
Anti-apoptotic signaling by the interleukin-2 receptor reveals a
function for cytoplasmic tyrosine residues within the common gamma
(gamma c) receptor subunit. J Biol Chem. 278:10239–10249. 2003.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Sprissler C, Belenki D, Maurer H, Aumann
K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J,
Alexandrovski J, et al: Depletion of STAT5 blocks TEL-SYK-induced
APMF-type leukemia with myelofibrosis and myelodysplasia in mice.
Blood Cancer J. 4:e2402014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kiel MJ, Velusamy T, Rolland D,
Sahasrabuddhe AA, Chung F, Bailey NG, Schrader A, Li B, Li JZ, Ozel
AB, et al: Integrated genomic sequencing reveals mutational
landscape of T-cell prolymphocytic leukemia. Blood. 124:1460–1472.
2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Feldman AL, Sun DX, Law ME, Novak AJ,
Attygalle AD, Thorland EC, Fink SR, Vrana JA, Caron BL, Morice WG,
et al: Overexpression of Syk tyrosine kinase in peripheral T-cell
lymphomas. Leukemia. 22:1139–1143. 2008. View Article : Google Scholar : PubMed/NCBI
|