Assessment of biochemical recurrence of prostate cancer (Review)
- Authors:
- Xiaozeng Lin
- Anil Kapoor
- Yan Gu
- Mathilda Jing Chow
- Hui Xu
- Pierre Major
- Damu Tang
-
Affiliations: Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada, The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada, Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada - Published online on: October 4, 2019 https://doi.org/10.3892/ijo.2019.4893
- Pages: 1194-1212
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al: EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014. View Article : Google Scholar | |
Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, et al: EAU-ESTRO-SIOG Guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 71:618–629. 2017. View Article : Google Scholar | |
Bill-Axelson A, Holmberg L, Garmo H, Rider JR, Taari K, Busch C, Nordling S, Häggman M, Andersson SO, Spångberg A, et al: Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med. 370:932–942. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hayes JH, Ollendorf DA, Pearson SD, Barry MJ, Kantoff PW, Lee PA and McMahon PM: Observation versus initial treatment for men with localized, low-risk prostate cancer: A cost-effectiveness analysis. Ann Intern Med. 158:853–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Godtman RA, Holmberg E, Khatami A, Stranne J and Hugosson J: Outcome following active surveillance of men with screen-detected prostate cancer. Results from the Göteborg randomised population-based prostate cancer screening trial. Eur Urol. 63:101–107. 2013. View Article : Google Scholar | |
Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, et al: EAU-ESTRO-SIOG Guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 71:630–642. 2017. View Article : Google Scholar | |
Zaorsky NG, Raj GV, Trabulsi EJ, Lin J and Den RB: The dilemma of a rising prostate-specific antigen level after local therapy: What are our options? Semin Oncol. 40:322–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roehl KA, Han M, Ramos CG, Antenor JA and Catalona WJ: Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: Long-term results. J Urol. 172:910–914. 2004. View Article : Google Scholar : PubMed/NCBI | |
Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC and Partin AW: Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 294:433–439. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kupelian PA, Mahadevan A, Reddy CA, Reuther AM and Klein EA: Use of different definitions of biochemical failure after external beam radiotherapy changes conclusions about relative treatment efficacy for localized prostate cancer. Urology. 68:593–598. 2006. View Article : Google Scholar : PubMed/NCBI | |
Artibani W, Porcaro AB, De Marco V, Cerruto MA and Siracusano S: Management of biochemical recurrence after primary curative treatment for prostate cancer: A review. Urol Int. 100:251–262. 2018. View Article : Google Scholar | |
Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD and Walsh PC: Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 281:1591–1597. 1999. View Article : Google Scholar : PubMed/NCBI | |
Boorjian SA, Thompson RH, Tollefson MK, Rangel LJ, Bergstralh EJ, Blute ML and Karnes RJ: Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: The impact of time from surgery to recurrence. Eur Urol. 59:893–899. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heinlein CA and Chang C: Androgen receptor in prostate cancer. Endoc Rev. 25:276–308. 2004. View Article : Google Scholar | |
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, et al: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 351:1502–1512. 2004. View Article : Google Scholar : PubMed/NCBI | |
Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M and Tannock IF: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J Clin Oncol. 26:242–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI | |
Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al: Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J and Carroll PR: The University of California, San Francisco Cancer of the Prostate Risk Assessment score: A straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 173:1938–1942. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brajtbord JS, Leapman MS and Cooperberg MR: The CAPRA Score at 10 Years: Contemporary perspectives and analysis of supporting studies. Eur Urol. 71:705–709. 2017. View Article : Google Scholar | |
Cooperberg MR, Hilton JF and Carroll PR: The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 117:5039–5046. 2011. View Article : Google Scholar : PubMed/NCBI | |
D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ and Wein A: Biochemical outcome after radical prosta-tectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 280:969–974. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dillioglugil O, Leibman BD, Kattan MW, Seale-Hawkins C, Wheeler TM and Scardino PT: Hazard rates for progression after radical prostatectomy for clinically localized prostate cancer. Urology. 50:93–99. 1997. View Article : Google Scholar : PubMed/NCBI | |
Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI and Walsh PC: Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 169:517–523. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simmons MN, Stephenson AJ and Klein EA: Natural history of biochemical recurrence after radical prostatectomy: Risk assessment for secondary therapy. Eur Urol. 51:1175–1184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lange PH, Ercole CJ, Lightner DJ, Fraley EE and Vessella R: The value of serum prostate specific antigen determinations before and after radical prostatectomy. J Urol. 141:873–879. 1989. View Article : Google Scholar : PubMed/NCBI | |
Kim DK, Koo KC, Lee KS, Hah YS, Rha KH, Hong SJ and Chung BH: Time to disease recurrence is a predictor of metastasis and mortality in patients with High-risk prostate cancer who achieved undetectable prostate-specific antigen following Robot-assisted radical prostatectomy. J Korean Med Sci. 33:e2852018. View Article : Google Scholar : PubMed/NCBI | |
Walz J, Chun FK, Klein EA, Reuther A, Saad F, Graefen M, Huland H and Karakiewicz PI: Nomogram predicting the probability of early recurrence after radical prostatectomy for prostate cancer. J Urol. 181:601–608. 2009. View Article : Google Scholar | |
Pompe RS, Bandini M, Preisser F, Marchioni M, Zaffuto E, Tian Z, Salomon G, Schlomm T, Huland H, Graefen M, et al: Contemporary approach to predict early biochemical recurrence after radical prostatectomy: Update of the Walz nomogram. Prostate Cancer Prostatic Dis. 21:386–393. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: Cancer cell cycles. Science. 274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ross AE, D'Amico AV and Freedland SJ: Which, when and why? Rational use of tissue-based molecular testing in local-ized prostate cancer. Prostate Cancer Prostatic Dis. 19:1–6. 2016. View Article : Google Scholar | |
Carneiro A, Barbosa ARG, Takemura LS, Kayano PP, Moran NKS, Chen CK, Wroclawski ML, Lemos GC, da Cunha IW, Obara MT, et al: The role of immunohistochemical analysis as a tool for the diagnosis, prognostic evaluation and treatment of prostate cancer: A systematic review of the literature. Front Oncol. 8:3772018. View Article : Google Scholar : PubMed/NCBI | |
Iatropoulos MJ and Williams GM: Proliferation markers. Exp Toxicol Pathol. 48:175–181. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fantony JJ, Howard LE, Csizmadi I, Armstrong AJ, Lark AL, Galet C, Aronson WJ and Freedland SJ: Is Ki67 prognostic for aggressive prostate cancer? A multicenter real-world study. Biomark Med. 12:727–736. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Ojo D, Yan J and Tang D: PKM2 contributes to cancer metabolism. Cancer Lett. 356:184–191. 2015. View Article : Google Scholar | |
Carabet LA, Rennie PS and Cherkasov A: Therapeutic inhibition of myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci. 20:pii: E120. 2018. View Article : Google Scholar | |
Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J, Cornish TC, Sutcliffe S, et al: Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 21:1156–1167. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, et al: MYC drives overex-pression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol. 244:11–24. 2018. View Article : Google Scholar | |
Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D, Horn LA, Kulac I, Moubarek MS, Nelson PS, et al: Combined MYC activation and pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res. 76:283–292. 2016. View Article : Google Scholar : | |
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 310:644–648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, Suleman K, Varambally S, Brenner JC, MacDonald T, et al: Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 12:590–598. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Segawa T, Shiraishi T, Yoshida T, Toda Y, Yamada T, Kinukawa N, Kinoshita H, Kamoto T and Ogawa O: Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology. 66:332–337. 2005. View Article : Google Scholar : PubMed/NCBI | |
Osman I, Drobnjak M, Fazzari M, Ferrara J, Scher HI and Cordon-Cardo C: Inactivation of the p53 pathway in prostate cancer: Impact on tumor progression. Clin Cancer. 5:2082–2088. 1999. | |
Hemminki K: Familial risk and familial survival in prostate cancer. World J Urol. 30:143–148. 2012. View Article : Google Scholar | |
Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 31:1748–1757. 2013. View Article : Google Scholar : PubMed/NCBI | |
Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadaev T, Govindasami K, Guy M, Ellis S, Frost D, et al: Effect of BRCA mutations on metastatic relapse and Cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. 68:186–193. 2015. View Article : Google Scholar | |
Taylor RA, Fraser M, Livingstone J, Espiritu SM, Thorne H, Huang V, Lo W, Shiah YJ, Yamaguchi TN, Sliwinski A, et al: Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 8:136712017. View Article : Google Scholar : PubMed/NCBI | |
Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, et al: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 375:443–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cooperberg MR, Erho N, Chan JM, Feng FY, Fishbane N, Zhao SG, Simko JP, Cowan JE, Lehrer J, Alshalalfa M, et al: The diverse genomic landscape of clinically Low-risk prostate cancer. Eur Urol. 74:444–452. 2018. View Article : Google Scholar : PubMed/NCBI | |
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Evans JR, Zhao SG, Chang SL, Tomlins SA, Erho N, Sboner A, Schiewer MJ, Spratt DE, Kothari V, Klein EA, et al: Patient-level DNA damage and repair pathway profiles and prognosis after prostatectomy for high-risk prostate cancer. JAMA Oncol. 2:471–480. 2016. View Article : Google Scholar : PubMed/NCBI | |
Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R, Klein E, Rubin MA and Zhou M: TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 71:489–497. 2011. View Article : Google Scholar | |
Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, et al: RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 22:806–821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song C and Chen H: Predictive significance of TMRPSS2-ERG fusion in prostate cancer: A meta-analysis. Cancer Cell Int. 18:1772018. View Article : Google Scholar : | |
Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P and Stewart LA; PRISMA-P Group: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ. 350:g76472015. View Article : Google Scholar : PubMed/NCBI | |
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P and Stewart LA; PRISMA-P Group: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 4:12015. View Article : Google Scholar : PubMed/NCBI | |
Nam RK, Benatar T, Wallis CJ, Amemiya Y, Yang W, Garbens A, Naeim M, Sherman C, Sugar L and Seth A: MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate. 76:869–884. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, Hu MM and Shen ZJ: miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol. 187:1466–1472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Yang Z, Zhang Y, He J, Wang F, Su P, Han J, Song Z and Fei Y: Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. Int J Clin Exp Pathol. 8:8394–8401. 2015.PubMed/NCBI | |
Aakula A, Kohonen P, Leivonen SK, Mäkelä R, Hintsanen P, Mpindi JP, Martens-Uzunova E, Aittokallio T, Jenster G, Perälä M, et al: Systematic identification of MicroRNAs that impact on proliferation of prostate cancer cells and display changed expression in tumor tissue. Eur Urol. 69:1120–1128. 2016. View Article : Google Scholar | |
Ling XH, Han ZD, Xia D, He HC, Jiang FN, Lin ZY, Fu X, Deng YH, Dai QS, Cai C, et al: MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer. Mol Biol Rep. 41:2779–2788. 2014. View Article : Google Scholar : PubMed/NCBI | |
Avgeris M, Stravodimos K, Fragoulis EG and Scorilas A: The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer. 108:2573–2581. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tao Z, Xu S, Ruan H, Wang T, Song W, Qian L and Chen K: MiR-195/-16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol Biochem. 48:801–814. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mei W, Lin X, Kapoor A, Gu Y, Zhao K and Tang D: The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers (Basel). 11:pii: E434. 2019. View Article : Google Scholar | |
Yang Y, Guo JX and Shao ZQ: miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac J Trop Med. 10:87–91. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C and Wang DW: MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell. 16:387–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Hou X, Zhu J, Jiang C and Wei W: Expression of miR-30c and miR-29b in prostate cancer and its diagnostic significance. Oncol Lett. 16:3140–3144. 2018.PubMed/NCBI | |
Sachdeva M, Liu Q, Cao J, Lu Z and Mo YY: Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res. 40:6683–6692. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ozen M, Creighton CJ, Ozdemir M and Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 27:1788–1793. 2008. View Article : Google Scholar | |
Wach S, Nolte E, Szczyrba J, Stöhr R, Hartmann A, Ørntoft T, Dyrskjøt L, Eltze E, Wieland W and Keck B: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 130:611–621. 2012. View Article : Google Scholar | |
Liu B, Li J and Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform. 15:1–19. 2014. View Article : Google Scholar : | |
Chen CS, Huang CY, Huang SP, Lin VC, Yu CC, Chang TY and Bao BY: Genetic interaction analysis of TCF7L2 for biochemical recurrence after radical prostatectomy in localized prostate cancer. Int J Med Sci. 12:243–247. 2015. View Article : Google Scholar : PubMed/NCBI | |
Malhotra S, Lapointe J, Salari K, Higgins JP, Ferrari M, Montgomery K, van de Rijn M, Brooks JD and Pollack JR: A tri-marker proliferation index predicts biochemical recurrence after surgery for prostate cancer. PLoS One. 6. pp. e202932011, View Article : Google Scholar | |
Mo RJ, Han ZD, Liang YK, Ye JH, Wu SL, Lin SX, Zhang YQ, Song SD, Jiang FN, Zhong WD and Wu CL: Expression of PD-L1 in tumor-associated nerves correlates with reduced CD8+ tumor-associated lymphocytes and poor prognosis in prostate cancer. Int J Cancer. 144:3099–3110. 2019. View Article : Google Scholar | |
Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, Majores M, Stein J, Uhl B, Müller S, et al: The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res. 22:1969–1977. 2016. View Article : Google Scholar | |
Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, Finkelstein S, Michalopoulos G and Becich M: Gene expression analysis of prostate cancers. Mol Carcinog. 33:25–35. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sandsmark E, Andersen MK, Bofin AM, Bertilsson H, Drabløs F, Bathen TF, Rye MB and Tessem MB: SFRP4 gene expression is increased in aggressive prostate cancer. Sci Rep. 7:142762017. View Article : Google Scholar : PubMed/NCBI | |
Mortensen MM, Høyer S, Lynnerup AS, Ørntoft TF, Sørensen KD, Borre M and Dyrskjøt L: Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep. 5:160182015. View Article : Google Scholar : PubMed/NCBI | |
Mazzoni SM and Fearon ER: AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett. 355:1–8. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hu SB, Wang LY, Zhang X, Zhou X, Yang B, Li JH, Xiong J, Liu N, Li Y, et al: Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis. Oncogene. 36:6725–6737. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martins-Neves SR, Corver WE, Paiva-Oliveira DI, van den Akker BE, Briaire-de-Bruijn IH, Bovée JV, Gomes CM and Cleton-Jansen AM: Osteosarcoma stem cells have active Wnt/β-catenin and overexpress SOX2 and KLF4. J Cell Physiol. 231:876–886. 2016. View Article : Google Scholar | |
Lim X, Tan SH, Yu KL, Lim SB and Nusse R: Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proc Natl Acad Sci USA. 113:E1498–E1505. 2016. View Article : Google Scholar | |
Ma C, Liu C, Huang P, Kaku H, Chen J, Guo K, Ueki H, Sakai A, Nasu Y, Kumon H, et al: Significant association between the Axin2 rs2240308 single nucleotide polymorphism and the incidence of prostate cancer. Oncol Lett. 8:789–794. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu BR, Fairey AS, Madhav A, Yang D, Li M, Groshen S, Stephens C, Kim PH, Virk N, Wang L, et al: AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth. Prostate. 76:597–608. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nordby Y, Richardsen E, Rakaee M, Ness N, Donnem T, Patel HR, Busund LT, Bremnes RM and Andersen S: High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci Rep. 7:433782017. View Article : Google Scholar | |
Paulsson J, Ehnman M and Östman A: PDGF receptors in tumor biology: Prognostic and predictive potential. Future Oncol. 10:1695–1708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Demidenko R, Daniunaite K, Bakavicius A, Sabaliauskaite R, Skeberdyte A, Petroska D, Laurinavicius A, Jankevicius F, Lazutka JR and Jarmalaite S: Decreased expression of MT1E is a potential biomarker of prostate cancer progression. Oncotarget. 8:61709–61718. 2017. View Article : Google Scholar : PubMed/NCBI | |
Si M and Lang J: The roles of metallothioneins in carcinogenesis. J Hematol Oncol. 11:1072018. View Article : Google Scholar : PubMed/NCBI | |
Tse KY, Liu VW, Chan DW, Chiu PM, Tam KF, Chan KK, Liao XY, Cheung AN and Ngan HY: Epigenetic alteration of the metallothionein 1E gene in human endometrial carcinomas. Tumour Biol. 30:93–99. 2009. View Article : Google Scholar : PubMed/NCBI | |
Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitrc P, Pairojkul C, Wongkham S and Petmitrb S: Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev. 14:557–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Faller WJ, Rafferty M, Hegarty S, Gremel G, Ryan D, Fraga MF, Esteller M, Dervan PA and Gallagher WM: Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis. Melanoma Res. 20:392–400. 2010.PubMed/NCBI | |
Wer ynska B, Pula B, Muszczynska-Bernhard B, Gomulkiewicz A, Piotrowska A, Prus R, Podhorska-Okolow M, Jankowska R and Dziegiel P: Metallothionein 1F and 2A over-expression predicts poor outcome of non-small cell lung cancer patients. Exp Mol Pathol. 94:301–308. 2013. View Article : Google Scholar | |
Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, Cleris L, Formelli F, Pilotti S, Pierotti MA and Greco A: Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab Invest. 88:474–481. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Rhodes DR, Furge KA, Kanayama H, Kagawa S, Haab BB and Teh BT: Gene expression profiling of clear cell renal cell carcinoma: Gene identification and prognostic classification. Proc Natl Acad Sci USA. 98:9754–9759. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jin R, Bay BH, Chow VT, Tan PH and Lin VC: Metallothionein 1E mRNA is highly expressed in oestrogen receptor-negative human invasive ductal breast cancer. Br J Cancer. 83:319–323. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hur H, Ryu HH, Li CH, Kim IY, Jang WY and Jung S: Metallothinein 1E enhances glioma invasion through modulation matrix metalloproteinases-2 and 9 in U87MG mouse brain tumor model. J Korean Neurosurg Soc. 59:551–558. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ryu HH, Jung S, Jung TY, Moon KS, Kim IY, Jeong YI, Jin SG, Pei J, Wen M and Jang WY: Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol. 41:1305–1313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mavridis K, Stravodimos K and Scorilas A: Quantified KLK15 gene expression levels discriminate prostate cancer from benign tumors and constitute a novel independent predictor of disease progression. Prostate. 73:1191–1201. 2013. View Article : Google Scholar : PubMed/NCBI | |
Obiezu CV and Diamandis EP: Human tissue kallikrein gene family: Applications in cancer. Cancer Lett. 224:1–22. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, Lehman ML, McPherson SJ, Roshan-Moniri M, Butler MS, et al: Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene. 36:3417–3427. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muhl L, Folestad EB, Gladh H, Wang Y, Moessinger C, Jakobsson L and Eriksson U: Neuropilin 1 binds PDGF-D and is a co-receptor in PDGF-D-PDGFRβ signaling. J Cell Sci. 130:1365–1378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Li C, Zhao Y, Wu L, Du X and Han Z: VEGF-A/Neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells. Cell Physiol Biochem. 44:1251–1262. 2017. View Article : Google Scholar | |
Latil A, Bièche I, Pesche S, Valéri A, Fournier G, Cussenot O and Lidereau R: VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer. 89:167–171. 2000. View Article : Google Scholar | |
Talagas M, Uguen A, Garlantezec R, Fournier G, Doucet L, Gobin E, Marcorelles P, Volant A and DE Braekeleer M: VEGFR1 and NRP1 endothelial expressions predict distant relapse after radical prostatectomy in clinically localized prostate cancer. Anticancer Res. 33:2065–2075. 2013.PubMed/NCBI | |
Li F, Xu Y and Liu RL: SAMD5 mRNA was overexpressed in prostate cancer and can predict biochemical recurrence after radical prostatectomy. Int Urol Nephrol. 51:443–451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matsuo T, Dat le T, Komatsu M, Yoshimaru T, Daizumoto K, Sone S, Nishioka Y and Katagiri T: Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes. PLoS One. 9:e1136062014. View Article : Google Scholar : PubMed/NCBI | |
Yagai T, Matsui S, Harada K, Inagaki FF, Saijou E, Miura Y, Nakanuma Y, Miyajima A and Tanaka M: Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree. PLoS One. 12:e01753552017. View Article : Google Scholar : PubMed/NCBI | |
Watanabe T, Kobunai T, Akiyoshi T, Matsuda K, Ishihara S and Nozawa K: Prediction of response to preoperative chemo-radiotherapy in rectal cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis Colon Rectum. 57:23–31. 2014. View Article : Google Scholar | |
Wang Y, Shang Y, Li J, Chen W, Li G, Wan J, Liu W and Zhang M: Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. Elife. 7:pii: e35677. 2018. | |
Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R, et al: SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 470:269–273. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang DT, Shi JG, Liu Y and Jiang HM: The prognostic value of Smad4 mRNA in patients with prostate cancer. Tumour Biol. 35:3333–3337. 2014. View Article : Google Scholar | |
Guo J, Wang M, Wang Z and Liu X: Overexpression of pleomor-phic adenoma gene-like 2 is a novel poor prognostic marker of prostate cancer. PLoS One. 11:e01586672016. View Article : Google Scholar | |
Li N, Li D, Du Y, Su C, Yang C, Lin C, Li X and Hu G: Overexpressed PLAGL2 transcriptionally activates Wnt6 and promotes cancer development in colorectal cancer. Oncol Rep. 41:875–884. 2019. | |
Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, Paik JH, Zhang H, Xiao Y, Perry SR, et al: PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 17:497–509. 2010. View Article : Google Scholar : PubMed/NCBI | |
Landrette SF, Kuo YH, Hensen K, Barjesteh van Waalwijk van Doorn-Khosrovani S, Perrat PN, Van de Ven WJ, Delwel R and Castilla LH: Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood. 105:2900–2907. 2005. View Article : Google Scholar | |
Landrette SF, Madera D, He F and Castilla LH: The transcription factor PlagL2 activates Mpl transcription and signaling in hematopoietic progenitor and leukemia cells. Leukemia. 25:655–662. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, Sjöström M, Den RB, Freedland SJ, Klein EA, et al: The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. J Natl Cancer Inst. 111:301–310. 2019. View Article : Google Scholar | |
Kladi-Skandali A, Mavridis K, Scorilas A and Sideris DC: Expressional profiling and clinical relevance of RNase kappa in prostate cancer: A novel indicator of favorable progression-free survival. J Cancer Res Clin Oncol. 144:2049–2057. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gkratsou AS, Fragoulis EG and Sideris DC: Effect of cytostatic drugs on the mRNA expression levels of ribonuclease κ in breast and ovarian cancer cells. Anticancer Agents Med Chem. 14:400–408. 2014. View Article : Google Scholar | |
Ma X, Du T, Zhu D, Chen X, Lai Y, Wu W, Wang Q, Lin C, Li Z, Liu L and Huang H: High levels of glioma tumor suppressor candidate region gene 1 predicts a poor prognosis for prostate cancer. Oncol Lett. 16:6749–6755. 2018.PubMed/NCBI | |
Yang P, Kollmeyer TM, Buckner K, Bamlet W, Ballman KV and Jenkins RB: Polymorphisms in GLTSCR1 and ERCC2 are associated with the development of oligodendrogliomas. Cancer. 103:2363–2372. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alpsoy A and Dykhuizen EC: Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem. 293:3892–3903. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Chow MJ, Kapoor A, Mei W, Jiang Y, Yan J, De Melo J, Seliman M, Yang H, Cutz JC, et al: Biphasic alteration of butyrylcholinesterase (BChE) during prostate cancer development. Transl Oncol. 11:1012–1022. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chatonnet A and Lockridge O: Comparison of butyrylcholines-terase and acetylcholinesterase. Biochem J. 260:625–634. 1989. View Article : Google Scholar : PubMed/NCBI | |
Evans FT, Gray PW, Lehmann H and Silk E: Sensitivity to succinylcholine in relation to serum-cholinesterase. Lancet. 1:1229–1230. 1952. View Article : Google Scholar : PubMed/NCBI | |
De Vriese C, Gregoire F, Lema-Kisoka R, Waelbroeck M, Robberecht P and Delporte C: Ghrelin degradation by serum and tissue homogenates: Identification of the cleavage sites. Endocrinology. 145:4997–5005. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brimijoin S, Gao Y, Geng L and Chen VP: Treating cocaine addiction, obesity, and emotional disorders by viral gene transfer of butyrylcholinesterase. Front Pharmacol. 9:1122018. View Article : Google Scholar : PubMed/NCBI | |
Schopfer LM, Lockridge O and Brimijoin S: Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. Gen Comp Endocrinol. 224:61–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brimijoin S, Chen VP, Pang YP, Geng L and Gao Y: Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem Biol Interact. 259:271–275. 2016. View Article : Google Scholar : PubMed/NCBI | |
Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, Bergstralh EJ, Kollmeyer T, Fink S, Haddad Z, et al: Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One. 8:e668552013. View Article : Google Scholar : PubMed/NCBI | |
Karnes RJ, Bergstralh EJ, Davicioni E, Ghadessi M, Buerki C, Mitra AP, Crisan A, Erho N, Vergara IA, Lam LL, et al: Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol. 190:2047–2053. 2013. View Article : Google Scholar : PubMed/NCBI | |
Klein EA, Haddad Z, Yousefi K, Lam LL, Wang Q, Choeurng V, Palmer-Aronsten B, Buerki C, Davicioni E, Li J, et al: Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology. 90:148–152. 2016. View Article : Google Scholar : PubMed/NCBI | |
Knezevic D, Goddard AD, Natraj N, Cherbavaz DB, Clark-Langone KM, Snable J, Watson D, Falzarano SM, Magi-Galluzzi C, Klein EA and Quale C: Analytical validation of the Oncotype DX prostate cancer assay-a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics. 14:6902013. View Article : Google Scholar | |
Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, Chan JM, Li J, Cowan JE, Tsiatis AC, et al: A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 66:550–560. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, Mesher D, Speights VO, Stankiewicz E, Foster CS, et al: Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: A retrospective study. Lancet Oncol. 12:245–255. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oderda M, Cozzi G, Daniele L, Sapino A, Munegato S, Renne G, De Cobelli O and Gontero P: Cell-cycle Progression-score might improve the current risk assessment in newly diagnosed prostate cancer patients. Urology. 102:73–78. 2017. View Article : Google Scholar | |
Albala D, Kemeter MJ, Febbo PG, Lu R, John V, Stoy D, Denes B, McCall M, Shindel AW and Dubeck F: Health economic impact and prospective clinical utility of oncotype DX® genomic prostate score. Rev Urol. 18:123–132. 2016. | |
Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, Ali A, Chen Y, Knezevic D, Maddala T, et al: A Biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol. 68:123–131. 2015. View Article : Google Scholar | |
Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S, Gutin A, Lanchbury JS, Swanson GP, Stone S and Carroll PR: Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol. 31:1428–1434. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Den Eeden SK, Lu R, Zhang N, Quesenberry CP Jr, Shan J, Han JS, Tsiatis AC, Leimpeter AD, Lawrence HJ, Febbo PG and Presti JC: A Biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur Urol. 73:129–138. 2018. View Article : Google Scholar | |
Eggener S, Karsh LI, Richardson T, Shindel AW, Lu R, Rosenberg S, Goldfischer E, Korman H, Bennett J, Newmark J and Denes BS: A 17-gene panel for prediction of adverse prostate cancer pathologic features: Prospective clinical validation and utility. Urology. 126:76–82. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mosley JD and Keri RA: Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists. BMC Med Genomics. 1:112008. View Article : Google Scholar : PubMed/NCBI | |
Freedland SJ, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J, Younus A, Gutin A, Sangale Z, Lanchbury JS, et al: Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys. 86:848–853. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bishoff JT, Freedland SJ, Gerber L, Tennstedt P, Reid J, Welbourn W, Graefen M, Sangale Z, Tikishvili E, Park J, et al: Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol. 192:409–414. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tosoian JJ, Chappidi MR, Bishoff JT, Freedland SJ, Reid J, Brawer M, Stone S, Schlomm T and Ross AE: Prognostic utility of biopsy-derived cell cycle progression score in patients with National Comprehensive Cancer Network low-risk prostate cancer undergoing radical prostatectomy: Implications for treatment guidance. BJU Int. 120:808–814. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cuzick J, Berney DM, Fisher G, Mesher D, Møller H, Reid JE, Perry M, Park J, Younus A, Gutin A, et al: Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. 106:1095–1099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Health Quality Ontario: Prolaris cell cycle progression test for localized prostate cancer: A health technology assessment. Ont Health Technol Assess Ser. 17:1–75. 2017. | |
Li F, Ji JP, Xu Y and Liu RL: Identification a novel set of 6 differential expressed genes in prostate cancer that can potentially predict biochemical recurrence after curative surgery. Clin Transl Oncol. 21:1067–1075. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chu J, Li N and Gai W: Identification of genes that predict the biochemical recurrence of prostate cancer. Oncol Lett. 16:3447–3452. 2018.PubMed/NCBI | |
Abou-Ouf H, Alshalalfa M, Takhar M, Erho N, Donnelly B, Davicioni E, Karnes RJ and Bismar TA: Validation of a 10-gene molecular signature for predicting biochemical recurrence and clinical metastasis in localized prostate cancer. J Cancer Res Clin Oncol. 144:883–891. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russo MA, Ravenna L, Pellegrini L, Petrangeli E, Salvatori L, Magrone T, Fini M and Tafani M: Hypoxia and inflammation in prostate cancer progression. Cross-talk with androgen and estrogen receptors and cancer stem cells. Endocr Metab Immune Disord Drug Targets. 16:235–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marignol L, Rivera-Figueroa K, Lynch T and Hollywood D: Hypoxia, notch signalling, and prostate cancer. Nat Rev Urol. 10:405–413. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Roberts D, Takhar M, Erho N, Bibby BAS, Thiruthaneeswaran N, Bhandari V, Cheng WC, Haider S, McCorry AMB, et al: Development and validation of a 28-gene Hypoxia-related prognostic signature for localized prostate cancer. EBioMedicine. 31:182–189. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Mei W, Gu Y, Lin X, He L, Zeng H, Wei F, Wan X, Yang H, Major P and Tang D: Construction of a set of novel and robust gene expression signatures predicting prostate cancer recurrence. Mol Oncol. 12:1559–1578. 2018. View Article : Google Scholar : PubMed/NCBI | |
Apostolopoulos V, Stojanovska L and Gargosky SE: MUC1 (CD227): A multi-tasked molecule. Cell Mol Life Sci. 72:4475–4500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kufe DW: Mucins in cancer: Function, prognosis and therapy. Nat Rev Cancer. 9:874–885. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nath S and Mukherjee P: MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 20:332–342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wurz GT, Kao CJ, Wolf M and DeGregorio MW: Tecemotide: An antigen-specific cancer immunotherapy. Hum Vaccin Immunother. 10:3383–3393. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eminaga O, Wei W, Hawley SJ, Auman H, Newcomb LF, Simko J, Hurtado-Coll A, Troyer DA, Carroll PR, Carroll PR, et al: MUC1 expression by immunohistochemistry is associated with adverse pathologic features in prostate cancer: A Multi-institutional Study. PLoS One. 11:e01652362016. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Major P, Kapoor A, Wei F, Yan J, Aziz T, Zheng M, Jayasekera D, Cutz JC, Chow MJ and Tang D: Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotarget. 7:83115–83133. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Gu Y, Kapoor A, Wei F, Aziz T, Ojo D, Jiang Y, Bonert M, Shayegan B, Yang H, et al: Overexpression of MUC1 and genomic alterations in its network associate with prostate cancer progression. Neoplasia. 19:857–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tarnowski M, Czerewaty M, Deskur A, Safranow K, Marlicz W, Urasińska E, Ratajczak MZ and Starzyńska T: Expression of cancer testis antigens in colorectal cancer: New prognostic and therapeutic implications. Dis Markers. 2016:19875052016. View Article : Google Scholar : PubMed/NCBI | |
Stellfox ME, Nardi IK, Knippler CM and Foltz DR: Differential binding partners of the Mis18a/β YIPPEE domains regulate Mis18 complex recruitment to centromeres. Cell Rep. 15:2127–2135. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nardi IK, Zasadzińska E, Stellfox ME, Knippler CM and Foltz DR: Licensing of centromeric chromatin assembly through the Mis18a-Mis18β heterotetramer. Mol Cell. 61:774–787. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Chen Z, Lin F, Wang Z, Gao Q, Xie H, Xiao H, Zhou Y, Zhang F, Ma Y, et al: OIP 5 promotes growth, metastasis and chemoresistance to cisplatin in bladder cancer cells. J Cancer. 9:4684–4695. 2018. View Article : Google Scholar : | |
He J, Zhao Y, Zhao E, Wang X, Dong Z, Chen Y, Yang L and Cui H: Cancer-testis specific gene OIP5: A downstream gene of E2F1 that promotes tumorigenesis and metastasis in glioblastoma by stabilizing E2F1 signaling. Neuro Oncol. 20:1173–1184. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong M, Xu Y, Dong W, Guo G, Ni W, Wang Y, Wang Y and An R: Expression of Opa interacting protein 5 (OIP5) is associated with tumor stage and prognosis of clear cell renal cell carcinoma. Acta Histochem. 115:810–815. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chun HK, Chung KS, Kim HC, Kang JE, Kang MA, Kim JT, Choi EH, Jung KE, Kim MH, Song EY, et al: OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers. BMB Rep. 43:349–354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mobasheri MB, Shirkoohi R and Modarressi MH: Cancer/Testis OIP5 and TAF7L Genes are Up-regulated in breast cancer. Asian Pac J Cancer Prev. 16:4623–4628. 2015. View Article : Google Scholar : PubMed/NCBI | |
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pèrez-Plasencia C and Campos-Parra AD: Crosstalk between long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol. 9:6692019. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ramnarine VR, Kobelev M, Gibb EA, Nouri M, Lin D, Wang Y, Buttyan R, Davicioni E, Zoubeidi A and Collins CC: The evolution of long noncoding RNA acceptance in prostate cancer initiation and progression, and its clinical utility in disease management. Eur Urol. Aug 22–2019.Epub ahead of print. View Article : Google Scholar | |
Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N and Isaacs WB: DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59:5975–5979. 1999.PubMed/NCBI | |
Crawford ED, Rove KO, Trabulsi EJ, Qian J, Drewnowska KP, Kaminetsky JC, Huisman TK, Bilowus ML, Freedman SJ, Glover WL Jr and Bostwick DG: Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: A prospective study of 1,962 cases. J Urol. 188:1726–1731. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW, Ellis WJ, Marks LS, Fradet Y, Rittenhouse H and Groskopf J: PCA3: A molecular urine assay for predicting prostate biopsy outcome. J Urol. 179:1587–1592. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gittelman MC, Hertzman B, Bailen J, Williams T, Koziol I, Henderson RJ, Efros M, Bidair M and Ward JF: PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: A prospecAive multicenter clinical study. J Urol. 190:64–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Chen X, Ding L, Ma J, Jing W, Lan T, Sattar H, Wei Y, Zhou F and Yuan Y: The prognostic value of long noncoding RNAs in prostate cancer: A systematic review and meta-analysis. Oncotarget. 8:57755–57765. 2017.PubMed/NCBI | |
Wu XL, Zhang JW, Li BS, Peng SS and Yuan YQ: The prognostic value of abnormally expressed lncRNAs in prostatic carcinoma: A systematic review and meta-analysis. Medicine (Baltimore). 96:e92792017. View Article : Google Scholar | |
Wang J, Cheng G, Li X, Pan Y, Qin C, Yang H, Hua L and Wang Z: Overexpression of long non-coding RNA LOC400891 promotes tumor progression and poor prognosis in prostate cancer. Tumour Biol. 37:9603–9613. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY and Zhou WQ: Long non-coding RNA ATB promotes growth and epithelial-mesen-chymal transition and predicts poor prognosis in human prostate carcinoma. Oncol Rep. 36:10–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocel-lular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Zhang F, Zou Y, Li J, Liu Y and Huang W: The function and mechanism of long Non-coding RNA-ATB in cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Cheng G, Zhang C, Zheng Y, Xu H, Yang H and Hua L: Long noncoding RNA LINC01296 is associated with poor prognosis in prostate cancer and promotes cancer-cell proliferation and metastasis. Onco Targets Ther. 10:1843–1852. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ and Yan JB: Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol. 36:7175–7183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seitz AK, Christensen LL, Christensen E, Faarkrog K, Ostenfeld MS, Hedegaard J, Nordentoft I, Nielsen MM, Palmfeldt J, Thomson M, et al: Profiling of long non-coding RNAs identifies LINC00958 and LINC01296 as candidate oncogenes in bladder cancer. Sci Rep. 7:3952017. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang M, Wang C and Ning X: Long Noncoding RNA LINC01296 Harbors miR-21a to regulate colon carcinoma proliferation and invasion. Oncol Res. 27:541–549. 2019. View Article : Google Scholar | |
Qin QH, Yin ZQ, Li Y, Wang BG and Zhang MF: Long inter-genic noncoding RNA 01296 aggravates gastric cancer cells progress through miR-122/MMP-9. Biomed Pharmacother. 97:450–457. 2018. View Article : Google Scholar | |
Zhang D, Li H, Xie J, Jiang D, Cao L, Yang X, Xue P and Jiang X: Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. Int J Oncol. 52:1777–1786. 2018.PubMed/NCBI | |
Jiang M, Xiao Y, Liu D, Luo N, Gao Q and Guan Y: Overexpression of long noncoding RNA LINC01296 indicates an unfavorable prognosis and promotes tumorigenesis in breast cancer. Gene. 675:217–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Duan L, Liu H and Zhang L: Long noncoding RNA LINC01296 induces non-small cell lung cancer growth and progression through sponging miR-5095. Am J Transl Res. 11:895–903. 2019.PubMed/NCBI | |
Feng W, Zhai C, Shi W, Zhang Q, Yan X, Wang J, Wang Q and Li M: Clinicopathological and prognostic value of LINC01296 in cancers: A meta-analysis. Artif Cells Nanomed Biotechnol. 47:3315–3321. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Li M and Huang P: LINC01296 promotes proliferation, migration, and invasion of HCC cells by targeting miR-122-5P and modulating EMT activity. Onco Targets Ther. 12:2193–2203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, et al: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 45:1392–1398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mehra R, Udager AM, Ahearn TU, Cao X, Feng FY, Loda M, Petimar JS, Kantoff P, Mucci LA and Chinnaiyan AM: Overexpression of the long Non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur Urol. 70:549–552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM, Magi-Galluzzi C, Mehra R, Sahu A, Siddiqui J, et al: RNA biomarkers associated with metastatic progression in prostate cancer: A multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 15:1469–1480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, Siddiqui J, Cao X, Wei J, Jiang H, et al: A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia. 16:1121–1127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raab JR, Smith KN, Spear CC, Manner CJ, Calabrese JM and Magnuson T: SWI/SNF remains localized to chromatin in the presence of SCHLAP1. Nat Genet. 51:26–29. 2019. View Article : Google Scholar : | |
Fotouhi Ghiam A, Taeb S, Huang X, Huang V, Ray J, Scarcello S, Hoey C, Jahangiri S, Fokas E, Loblaw A, et al: Long non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer. Oncotarget. 8:4668–4689. 2017. | |
Na XY, Liu ZY, Ren PP, Yu R and Shang XS: Long non-coding RNA UCA1 contributes to the progression of prostate cancer and regulates proliferation through KLF4-KRT6/13 signaling pathway. Int J Clin Exp Med. 8:12609–12616. 2015.PubMed/NCBI | |
Wang F, Zhou J, Xie X, Hu J, Chen L, Hu Q, Guo H and Yu C: Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma. 62:432–438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Wu F, Dai WY, Zheng DC, Zheng C, Ye H, Zhou B, Chen JJ and Chen P: Aberrant expression of UCA1 in gastric cancer and its clinical significance. Clin Transl Oncol. 17:640–646. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Zhang X, Hao Y, Fang Z and He Y: Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res. 24:335–341. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Wan D, Zheng D, Zheng Q, Wu F and Zhi Q: Long non-coding RNA UCA1 promotes the tumorigenesis in pancreatic cancer. Biomed Pharmacother. 83:1220–1226. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Sun C and Cui Z: A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma. Clin Transl Oncol. 19:735–741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xuan W, Yu H, Zhang X and Song D: Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett. 593:1901–1914. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Dong X, Ji T, Chen G and Shan L: Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res. 9:366–375. 2017.PubMed/NCBI | |
He C, Lu X, Yang F, Qin L, Guo Z, Sun Y and Wu J: LncRNA UCA1 acts as a sponge of miR-204 to up-regulate CXCR4 expression and promote prostate cancer progression. Biosci Rep. 39:pii: BSR20181465. 2019. View Article : Google Scholar | |
Shukla S, Zhang X, Niknafs YS, Xiao L, Mehra R, Cieślik M, Ross A, Schaeffer E, Malik B, Guo S, et al: Identification and validation of PCAT14 as prognostic biomarker in prostate cancer. Neoplasia. 18:489–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
White NM, Zhao SG, Zhang J, Rozycki EB, Dang HX, McFadden SD, Eteleeb AM, Alshalalfa M, Vergara IA, Erho N, et al: Multi-institutional analysis shows that low PCAT-14 expression associates with poor outcomes in prostate cancer. Eur Urol. 71:257–266. 2017. View Article : Google Scholar | |
Wang Y, Hu Y, Wu G, Yang Y, Tang Y, Zhang W, Wang K, Liu Y, Wang X and Li T: Long noncoding RNA PCAT-14 induces proliferation and invasion by hepatocellular carcinoma cells by inducing methylation of miR-372. Oncotarget. 8:34429–34441. 2017.PubMed/NCBI | |
Huang TB, Dong CP, Zhou GC, Lu SM, Luan Y, Gu X, Liu L and Ding XF: A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int Urol Nephrol. 49:825–835. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shao N, Tang H, Qu Y, Wan F and Ye D: Development and validation of lncRNAs-based nomogram for prediction of biochemical recurrence in prostate cancer by bioinformatics analysis. J Cancer. 10:2927–2934. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shao N, Zhu Y, Wan FN and Ye DW: Identification of seven long noncoding RNAs signature for prediction of biochemical recurrence in prostate cancer. Asian J Androl. Mar 5–2019.Epub ahead of print. PubMed/NCBI | |
Xu J, Lan Y, Yu F, Zhu S, Ran J, Zhu J, Zhang H, Li L, Cheng S, Xiao Y and Li X: Transcriptome analysis reveals a long non-coding RNA signature to improve biochemical recurrence prediction in prostate cancer. Oncotarget. 9:24936–24949. 2018. View Article : Google Scholar : PubMed/NCBI | |
Diao P, Song Y, Ge H, Wu Y, Li J, Zhang W, Wang Y and Cheng J: Identification of 4-lncRNA prognostic signature in head and neck squamous cell carcinoma. J Cell Biochem. 120:10010–10020. 2019. View Article : Google Scholar | |
Zhang J, Yin M, Peng G and Zhao Y: CRNDE: An important oncogenic long non-coding RNA in human cancers. Cell Prolif. 51:e124402018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Z, Xiong L, Guo C, Jiang T, Zeng L, Li G and Wang J: SNHG1 lncRNA negatively regulates miR-199a-3p to enhance CDK7 expression and promote cell proliferation in prostate cancer. Biochem Biophys Res Commun. 487:146–152. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thin KZ, Tu JC and Raveendran S: Long non-coding SNHG1 in cancer. Clin Chim Acta. 494:38–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Geng D, Li S, Chen Z and Zhao W: LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem. 399:387–395. 2018. View Article : Google Scholar | |
Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, Zhang C, Qi Y and Zhao S: Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med. Aug 22–2019.Epub ahead of print. View Article : Google Scholar | |
Hu X, Feng H, Huang H, Gu W, Fang Q, Xie Y, Qin C and Hu X: Downregulated long noncoding RNA PART1 inhibits proliferation and promotes apoptosis in bladder cancer. Technol Cancer Res Treat. 18:15330338198466382019. View Article : Google Scholar : PubMed/NCBI | |
Zhihua Z, Weiwei W, Lihua N, Jianying Z and Jiang G: p53-induced long non-coding RNA PGM5-AS1 inhibits the progression of esophageal squamous cell carcinoma through regulating miR-466/PTEN axis. IUBMB Life. 71:1492–1502. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Wu Y, Xiao J and Zou J: Long Non-coding RNA prostate cancer-associated Transcript 7 (PCAT7) induces poor prognosis and promotes tumorigenesis by inhibiting mir-134-5p in Non-small-cell lung (NSCLC). Med Sci Monit. 23:6089–6098. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan Q, Chu H, Ge Y, Ma G, Du M, Wang M, Zhang Z and Zhang W: LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J Cancer. 9:1414–1420. 2018. View Article : Google Scholar : | |
Shang Z, Yu J, Sun L, Tian J, Zhu S, Zhang B, Dong Q, Jiang N, Flores-Morales A, Chang C and Niu Y: LncRNA PCAT1 activates AKT and NF-kappaB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKa complex. Nucleic Acids Res. 47:4211–4225. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Rand KA, Hazelett DJ, Ingles SA, Kittles RA, Strom SS, Rybicki BA, Nemesure B, Isaacs WB, Stanford JL, et al: Prostate cancer susceptibility in men of african ancestry at 8q24. J Natl Cancer Inst. 108:2016. View Article : Google Scholar | |
Huang L, Wang Y, Chen J, Wang Y, Zhao Y, Wang Y, Ma Y, Chen X, Liu W, Li Z, et al: Long noncoding RNA PCAT1, a novel serum-based biomarker, enhances cell growth by sponging miR-326 in oesophageal squamous cell carcinoma. Cell Death Dis. 10:5132019. View Article : Google Scholar : PubMed/NCBI | |
Yang ML, Huang Z, Wu LN, Wu R, Ding HX and Wang BG: lncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility. Biosci Rep. 39:pii: BSR20190708. 2019. View Article : Google Scholar | |
Zhao X, Fan Y, Lu C, Li H, Zhou N, Sun G and Fan H: PCAT1 is a poor prognostic factor in endometrial carcinoma and associated with cancer cell proliferation, migration and invasion. Bosn J Basic Med Sci. 19:274–281. 2019.PubMed/NCBI | |
Bartolomei MS, Zemel S and Tilghman SM: Parental imprinting of the mouse H19 gene. Nature. 351:153–155. 1991. View Article : Google Scholar : PubMed/NCBI | |
Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S and Rastan S: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 71:515–526. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ward JF and Moul JW: Biochemical recurrence after definitive prostate cancer therapy. Part I: Defining and localizing biochemical recurrence of prostate cancer. Curr Opin Urol. 15:181–186. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ward JF and Moul JW: Biochemical recurrence after definitive prostate cancer therapy. Part II: Treatment strategies for biochemical recurrence of prostate cancer. Curr Opin Urol. 15:187–195. 2005. View Article : Google Scholar : PubMed/NCBI | |
McCormick BZ, Mahmoud AM, Williams SB and Davis JW: Biochemical recurrence after radical prostatectomy: Current status of its use as a treatment endpoint and early management strategies. Indian J Urol. 35:6–17. 2019.PubMed/NCBI | |
Spratt DE, McHugh DJ, Morris MJ and Morgans AK: Management of biochemically recurrent prostate cancer: Ensuring the right treatment of the right patient at the right time. Am Soc Clin Oncol Educ Book. 38:355–362. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, Carver B, Castellano D, Chung BH, Clarke N, et al: Management of patients with advanced prostate cancer: The report of the advanced prostate cancer consensus conference APCCC 2017. Eur Urol. 73:178–211. 2018. View Article : Google Scholar | |
Rahbar K, Afshar-Oromieh A, Jadvar H and Ahmadzadehfar H: PSMA theranostics: Current status and future directions. Mol Imaging. 17:15360121187760682018. View Article : Google Scholar : PubMed/NCBI | |
Wester HJ and Schottelius M: PSMA-Targeted radiopharmaceu-ticals for imaging and therapy. Semin Nucl Med. 49:302–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Keefe DS, Bacich DJ, Huang SS and Heston WDW: A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med. 59:1007–1013. 2018. View Article : Google Scholar : PubMed/NCBI | |
Israeli RS, Powell CT, Corr JG, Fair WR and Heston WD: Expression of the prostate-specific membrane antigen. Cancer Res. 54:1807–1811. 1994.PubMed/NCBI | |
Sweat SD, Pacelli A, Murphy GP and Bostwick DG: Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 52:637–640. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF and Moriarty R: Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 48:326–334. 1996. View Article : Google Scholar : PubMed/NCBI | |
Marchal C, Redondo M, Padilla M, Caballero J, Rodrigo I, García J, Quian J and Boswick DG: Expression of prostate specific membrane antigen (PSMA) in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. Histol Histopathol. 19:715–718. 2004.PubMed/NCBI | |
Sheikhbahaei S, Werner RA, Solnes LB, Pienta KJ, Pomper MG, Gorin MA and Rowe SP: Prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer: An update on important pitfalls. Semin Nucl Med. 49:255–270. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bouchelouche K and Sathekge MM: Letter from the editors. Semin Nucl Med. 49:245–246. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, Nguyen HG, Reiter RE, Rettig MB, Okamoto S, et al: Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: A prospective Single-Arm clinical trial. JAMA Oncol. 5:856–863. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M and Weckesser M: Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 45:2055–2061. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karnes RJ, Choeurng V, Ross AE, Schaeffer EM, Klein EA, Freedland SJ, Erho N, Yousefi K, Takhar M, Davicioni E, et al: Validation of a genomic risk classifier to predict prostate cancer-specific mortality in men with adverse pathologic features. Eur Urol. 73:168–175. 2018. View Article : Google Scholar | |
Cooperberg MR, Davicioni E, Crisan A, Jenkins RB, Ghadessi M and Karnes RJ: Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol. 67:326–333. 2015. View Article : Google Scholar : | |
Wiegel T, Bartkowiak D, Bottke D, Bronner C, Steiner U, Siegmann A, Golz R, Störkel S, Willich N, Semjonow A, et al: Adjuvant radiotherapy versus wait-and-see after radical prosta-tectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur Urol. 66:243–250. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang Z, Zhang Y, Sun G, Ding B, Yan L, Liu H, Guan W, Hu Z, Wang S, et al: The immune checkpoint regulator PDL1 is an independent prognostic biomarker for biochemical recurrence in prostate cancer patients following adjuvant hormonal therapy. J Cancer. 10:3102–3111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van den Broeck T, van den Bergh RCN, Briers E, Cornford P, Cumberbatch M, Tilki D, De Santis M, Fanti S, Fossati N, Gillessen S, et al: Biochemical recurrence in prostate cancer: The European association of urology prostate cancer guidelines panel recommendations. Eur Urol Focus. Jun 24–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, Koontz BF, Hamstra DA, Feng FY, Liauw SL, et al: Contemporary update of a Multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol. 34:3648–3654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Isharwal S and Stephenson AJ: Post-prostatectomy radiation therapy for locally recurrent prostate cancer. Expert Rev Anticancer Ther. 17:1003–1012. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tilki D, Preisser F, Graefen M, Huland H and Pompe RS: External validation of the European association of urology biochemical recurrence risk groups to predict metastasis and mortality after radical prostatectomy in a european cohort. Eur Urol. 75:896–900. 2019. View Article : Google Scholar : PubMed/NCBI | |
Spratt DE, Dess RT, Zumsteg ZS, Lin DW, Tran PT, Morgan TM, Antonarakis ES, Nguyen PL, Ryan CJ, Sandler HM, et al: A systematic review and framework for the use of hormone therapy with salvage radiation therapy for recurrent prostate cancer. Eur Urol. 73:156–165. 2018. View Article : Google Scholar | |
Shipley WU, Seiferheld W, Lukka HR, Major PP, Heney NM, Grignon DJ, Sartor O, Patel MP, Bahary JP, Zietman AL, et al: Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med. 376:417–428. 2017. View Article : Google Scholar : PubMed/NCBI | |
Freedland SJ, Choeurng V, Howard L, De Hoedt A, du Plessis M, Yousefi K, Lam LL, Buerki C, Ra S, Robbins B, et al: Utilization of a genomic classifier for prediction of metastasis following salvage radiation therapy after radical prostatectomy. Eur Urol. 70:588–596. 2016. View Article : Google Scholar : PubMed/NCBI | |
Semenas J, Allegrucci C, Boorjian SA, Mongan NP and Persson JL: Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets. 13:1308–1323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cucchiara V, Cooperberg MR, Dall'Era M, Lin DW, Montorsi F, Schalken JA and Evans CP: Genomic markers in prostate cancer decision making. Eur Urol. 73:572–582. 2018. View Article : Google Scholar | |
Pikor L, Thu K, Vucic E and Lam W: The detection and implication of genome instability in cancer. Cancer Metastasis Rev. 32:341–352. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Ojo D, Wei F, Wong N, Gu Y and Tang D: A novel aspect of tumorigenesis-BMI1 functions in regulating DNA damage response. Biomolecules. 5:3396–3415. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Yan J and Tang D: ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response. Histol Histopathol. 28:1547–1554. 2013.PubMed/NCBI | |
Wei F, Yan J and Tang D: Extracellular signal-regulated kinases modulate DNA damage response-a contributing factor to using MEK inhibitors in cancer therapy. Curr Med Chem. 18:5476–5482. 2011. View Article : Google Scholar | |
Lucarelli G, Loizzo D, Ferro M, Rutigliano M, Vartolomei MD, Cantiello F, Buonerba C, Di Lorenzo G, Terracciano D, De Cobelli O, et al: Metabolomic profiling for the identification of novel diagnostic markers and therapeutic targets in prostate cancer: An update. Expert Rev Mol Diagn. 19:377–387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Williams D and Fingleton B: Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis. Clin Exp Metastasis. 36:211–224. 2019. View Article : Google Scholar : PubMed/NCBI | |
Priolo C, Pyne S, Rose J, Regan ER, Zadra G, Photopoulos C, Cacciatore S, Schultz D, Scaglia N, McDunn J, et al: AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res. 74:7198–7204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pettersson A, Gerke T, Penney KL, Lis RT, Stack EC, Pértega-Gomes N, Zadra G, Tyekucheva S, Giovannucci EL, Mucci LA and Loda M: MYC overexpression at the protein and mRNA level and cancer outcomes among men treated with radical prostatectomy for prostate cancer. Cancer Epidemiol Biomarkers Prev. 27:201–207. 2018. View Article : Google Scholar : | |
Hammarsten P, Cipriano M, Josefsson A, Stattin P, Egevad L, Granfors T and Fowler CJ: Phospho-Akt immunoreactivity in prostate cancer: Relationship to disease severity and outcome, Ki67 and phosphorylated EGFR expression. PLoS One. 7:e479942012. View Article : Google Scholar : PubMed/NCBI | |
Flegal KM, Kit BK, Orpana H and Graubard BI: Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA. 309:71–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schiffmann J, Karakiewicz PI, Rink M, Manka L, Salomon G, Tilki D, Budäus L, Pompe R, Leyh-Bannurah SR, Haese A, et al: Obesity paradox in prostate cancer: Increased body mass index was associated with decreased risk of metastases after surgery in 13,667 patients. World J Urol. 36:1067–1072. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bansal D, Undela K, D'Cruz S and Schifano F: Statin use and risk of prostate cancer: A meta-analysis of observational studies. PLoS One. 7:e466912012. View Article : Google Scholar : PubMed/NCBI | |
Kollmeier MA, Katz MS, Mak K, Yamada Y, Feder DJ, Zhang Z, Jia X, Shi W and Zelefsky MJ: Improved biochemical outcomes with statin use in patients with high-risk localized prostate cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys. 79:713–718. 2011. View Article : Google Scholar | |
Song C, Park S, Park J, Shim M, Kim A, Jeong IG, Hong JH, Kim CS and Ahn H: Statin use after radical prostatectomy reduces biochemical recurrence in men with prostate cancer. Prostate. 75:211–217. 2015. View Article : Google Scholar | |
Freedland SJ, Hamilton RJ, Gerber L, Banez LL, Moreira DM, Andriole GL and Rittmaster RS: Statin use and risk of prostate cancer and high-grade prostate cancer: Results from the REDUCE study. Prostate Cancer Prostatic Dis. 16:254–259. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nordström T, Clements M, Karlsson R, Adolfsson J and Grönberg H: The risk of prostate cancer for men on aspirin, statin or antidiabetic medications. Eur J Cancer. 51:725–733. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rieken M, Kluth LA, Xylinas E, Seitz C, Fajkovic H, Karakiewicz PI, Lotan Y, Briganti A, Loidl W, Faison T, et al: Impact of statin use on biochemical recurrence in patients treated with radical prosta-tectomy. Prostate Cancer Prostatic Dis. 16:367–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pazhanisamy SK: Stem cells, DNA damage, ageing and cancer. Hematol Oncol Stem Cell Ther. 2:375–384. 2009. View Article : Google Scholar | |
Vitale I, Manic G, De Maria R, Kroemer G and Galluzzi L: DNA damage in stem cells. Mol Cell. 66:306–319. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siddique HR and Saleem M: Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: Preclinical and clinical evidences. Stem Cells. 30:372–378. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Gu Y and Tang D: BMI1, ATM and DDR. Oncoscience. 2:665–666. 2015.PubMed/NCBI | |
Lin X, Wei F, Whyte P and Tang D: BMI1 reduces ATR activation and signalling caused by hydroxyurea. Oncotarget. 8:89707–89721. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Ojo D, Lin X, Wong N, He L, Yan J, Xu S, Major P and Tang D: BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene. 34:3063–3075. 2015. View Article : Google Scholar | |
Wei L, Wang J, Lampert E, Schlanger S, DePriest AD, Hu Q, Gomez EC, Murakam M, Glenn ST, Conroy J, et al: Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 71:183–192. 2017. View Article : Google Scholar |