CircRNAs: From anonymity to novel regulators of gene expression in cancer (Review)
- Authors:
- Katherine L. Harper
- Euan Mcdonnell
- Adrian Whitehouse
-
Affiliations: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK - Published online on: October 24, 2019 https://doi.org/10.3892/ijo.2019.4904
- Pages: 1183-1193
This article is mentioned in:
Abstract
Salzman J: Circular RNA expression: Its potential regulation and function. Trends Genet. 32:309–316. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ebbesen KK, Hansen TB and Kjems J: Insights into circular RNA biology. RNA Biol. 14:1035–1045. 2017. View Article : Google Scholar : | |
Taylor JM: Host RNA circles and the origin of hepatitis delta virus. World J Gastroenterol. 20:2971–2978. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled exons. Cell. 64:607–613. 1991. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : | |
Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM, Kohlmaier A and Teupser D: Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 75:1071–1098. 2018. View Article : Google Scholar : | |
Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang D and Wilusz JE: Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28:2233–2247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J and Wang K: A comprehensive review of circRNA: From purification and identification to disease marker potential. PeerJ. 6:e55032018. View Article : Google Scholar : PubMed/NCBI | |
Chen I, Chen CY and Chuang TJ: Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu M, Pan J, Chen C, Xia S and Song Y: Circular RNAs: A rising star in respiratory diseases. Respir Res. 20:32019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T and Janitz M: The emerging role of circular RNAs in transcriptome regulation. Genomics. 109:401–407. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liang D, Tatomer DC and Wilusz JE: A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32:639–644. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schumann S, Jackson BR, Yule I, Whitehead SK, Revill C, Foster R and Whitehouse A: Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nat Microbiol. 2:162012016. View Article : Google Scholar : PubMed/NCBI | |
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C and Rajewsky N: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10:170–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, Manke T, Backofen R and Akhtar A: DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 544:115–119. 2017. View Article : Google Scholar | |
Chen D, Lu X, Yang F and Xing N: Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag Res. 11:1415–1423. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, Li D, Song H, Wang J, Hong M, et al: Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 26:1346–1364. 2019. View Article : Google Scholar | |
Deng L, Liu G, Zheng C, Zhang L, Kang Y and Yang F: Circ-LAMP1 promotes T-cell lymphoblastic lymphoma progression via acting as a ceRNA for miR-615-5p to regulate DDR2 expression. Gene. 701:146–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Wang X, Liu B, Lu Z, Xu Z, Xiu P, Liu Z and Li J: circ-BIRC6, a circular RNA, promotes hepatocellular carcinoma progression by targeting the miR-3918/Bcl2 axis. Cell Cycle. 18:976–989. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Li P, Wu M and Liu Q: Deregulation of circular RNAs in cancer from the perspectives of aberrant biogenesis, transport and removal. Front Genet. 10:162019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zou J, Ma X, Wang E and Peng G: Mechanisms and implications of ADAR-mediated RNA editing in cancer. Cancer Lett. 411:27–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee T and Pelletier J: The biology of DHX9 and its potential as a therapeutic target. Oncotarget. 7:42716–42739. 2016.PubMed/NCBI | |
Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, Zhang L, Camidge DR, Shay JW, Minna JD and Chalfant CE: hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest. 120:3923–3939. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gou Q, Wu K, Zhou JK, Xie Y, Liu L and Peng Y: Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc. Oncotarget. 8:71587–71596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Panda AC: Circular RNAs act as miRNA sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar | |
Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W and Cao H: An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 8:73271–73281. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mitra A, Pfeifer K and Park KS: Circular RNAs and competing endogenous RNA (ceRNA) networks. Transl Cancer Res. 7(Suppl 5): S624–S628. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wang J, Khanabdali R, Kalionis B, Tai X and Xia S: Circular RNAs: Isolation, characterization and their potential role in diseases. RNA Biol. 14:1715–1721. 2017. View Article : Google Scholar : PubMed/NCBI | |
Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B and Iraci N: microRNAs in Parkinson's disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci. 18:E26982017. View Article : Google Scholar : PubMed/NCBI | |
Rothman A, Restrepo H, Sarukhanov V, Evans WN, Wiencek RG Jr, Williams R, Hamburger N, Anderson K, Balsara J and Mann D: Assessment of microRNA and gene dysregulation in pulmonary hypertension by endoarterial biopsy. Pulm Circ. 7:455–464. 2017. View Article : Google Scholar : PubMed/NCBI | |
Girardi E, López P and Pfeffer S: On the importance of Host MicroRNAs during viral infection. Front Genet. 9:4392018. View Article : Google Scholar : PubMed/NCBI | |
Ragan C, Goodall GJ, Shirokikh NE and Preiss T: Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep. 9:20482019. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE: A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 9:e14782018. View Article : Google Scholar | |
Quan G and Li J: Circular RNAs: Biogenesis, expression and their potential roles in reproduction. J Ovarian Res. 11:92018. View Article : Google Scholar : PubMed/NCBI | |
Kulcheski FR, Christoff AP and Margis R: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 238:42–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pratt AJ and MacRae IJ: The RNA-induced silencing complex: A versatile gene-silencing machine. J Biol Chem. 284:17897–17901. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, Slezak-Prochazka I, Ding Y, Kroesen BJ and van den Berg A: Rapid generation of microRNA sponges for microRNA inhibition. PLoS One. 7:e292752012. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Yuan XQ and Li GC: The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol Rep. 33:2669–2674. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ and Huang Q: Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat Dis Int. Mar 9;S1499-3872(19)30039-6. 2019.Epub ahead of print. View Article : Google Scholar | |
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI | |
Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B and Wang S: CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 9:4172018. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Shi Y, Liu M and Sun J: circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 9:1752018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Chen Y and Jiang P: Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochem Biophys Res Commun. 506:455–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, et al: STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 14:e10069752018. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Zhuo H, Xu M, Wang L, Xu H, Peng J, Hou J, Lin L and Cai J: Regulatory network of circRNA-miRNA-mRNA contributes to the histological classification and disease progression in gastric cancer. J Transl Med. 16:2162018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, Wu J and Wang X: circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci. 110:568–581. 2019. View Article : Google Scholar : | |
Levanon D, Bernstein Y, Negreanu V, Bone KR, Pozner A, Eilam R, Lotem J, Brenner O and Groner Y: Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol Med. 3:593–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Zhang L, Fan K, Cheng ZX, Sun QC and Wang JJ: Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway. Biomed Res Int. 2016:15794902016. View Article : Google Scholar | |
Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZJ and Shen J: Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 14:514–521. 2017. View Article : Google Scholar : | |
Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, Yang X, Abdelmohsen K and Gorospe M: Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 45:4021–4035. 2017. View Article : Google Scholar : | |
Li X, Zhang Z, Jiang H, Li Q, Wang R, Pan H, Niu Y, Liu F, Gu H, Fan X and Gao J: Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. Cell Physiol Biochem. 51:2324–2340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Huang W, Wang X, Wang T, Chen Y, Chen B, Liu R, Bai P and Xing J: Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11. Mol Med. 24:402018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, Tong D, Wu D, Li C, Wei Q, et al: Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 8:61687–61697. 2017.PubMed/NCBI | |
Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W and Zhu J: CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 18:802019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM, Kohlmaier A and Teupser D: Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res. 3:75–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin M, Wei G and Sun X: Circ-UBR5: An exonic circular RNA and novel small nuclear RNA involved in RNA splicing. Biochem Biophys Res Commun. 503:1027–1034. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7:124292016. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A, Apponi LH, Pavlath GK and Corbett AH: PABPN1: Molecular function and muscle disease. FEBS J. 280:4230–4250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lapik YR, Fernandes CJ, Lau LF and Pestov DG: Physical and functional interaction between Pes1 and Bop1 in mammalian ribosome biogenesis. Mol Cell. 15:17–29. 2004. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017. | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu WY: Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar : | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wesselhoeft RA, Kowalski PS and Anderson DG: Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 9:26292018. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Floor SN and Doudna JA: Tunable protein synthesis by transcript isoforms in human cells. Elife. 5:e109212016. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. S1044-579X(18)30099-3. 2018.PubMed/NCBI | |
Luo GG and Ou JH: Oncogenic viruses and cancer. Virol Sin. 30:83–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S, Lee N, Shair KH, Moore PS and Chang Y: Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA. 115:E8737–E8745. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ungerleider NA, Jain V, Wang Y, Maness NJ, Blair RV, Alvarez X, Midkiff C, Kolson D, Bai S, Roberts C, et al: Comparative analysis of gammaherpesvirus circular RNA repertoires: Conserved and unique viral circular RNAs. J Virol. 93:e01952–18. 2019. | |
Wang M, Yu F, Wu W, Wang Y, Ding H and Qian L: Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci. 14:565–576. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Jakymiw A, Findlay V and Parsons C: KSHV-encoded MicroRNAs: Lessons for viral cancer pathogenesis and emerging concepts. Int J Cell Biol. 2012:6039612012. View Article : Google Scholar : PubMed/NCBI | |
Ungerleider N, Concha M, Lin Z, Roberts C, Wang X, Cao S, Baddoo M, Moss WN, Yu Y, Seddon M, et al: The Epstein Barr virus circRNAome. PLoS Pathog. 14:e10072062018. View Article : Google Scholar : PubMed/NCBI | |
Tagawa T, Gao S, Koparde VN, Gonzalez M, Spouge JL, Serquiña AP, Lurain K, Ramaswami R, Uldrick TS, Yarchoan R and Ziegelbauer JM: Discovery of Kaposi's sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci USA. 115:12805–12810. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Hu N, Li J, Zeng Z, Mo L, Sun J, Wu M and Hu Y: Unique expression signatures of circular RNAs in response to DNA tumor virus SV40 infection. Oncotarget. 8:98609–98622. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yan Y, Lin W, Li A, Zhang H, Lei X, Dai Z, Li X, Li H, Chen W, et al: Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol. 16:118–132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yan Y, Lei X, Li A, Zhang H, Dai Z, Li X, Chen W, Lin W, Chen F, et al: Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens. Oncotarget. 8:34961–34970. 2017.PubMed/NCBI | |
Zhang Y, Zhang H, An M, Zhao B, Ding H, Zhang Z, He Y, Shang H and Han X: Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection. J Transl Med. 16:3322018. View Article : Google Scholar : PubMed/NCBI | |
Wang ZY, Guo ZD, Li JM, Zhao ZZ, Fu YY, Zhang CM, Zhang Y and Liu LN, Qian J and Liu LN: Genome-wide search for competing endogenous RNAs responsible for the effects induced by Ebola virus replication and transcription using a trVLP system. Front Cell Infect Microbiol. 7:4792017. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Hu N, Mo L, Zeng Z, Sun J and Hu Y: Deep RNA sequencing reveals a repertoire of human fibroblast circular RNAs associated with cellular responses to Herpes simplex virus 1 infection. Cell Physiol Biochem. 47:2031–2045. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tung KH, Ernstoff MS, Allen C and Shu S: A review of exosomes and their role in the tumor microenvironment and host-tumor 'Macroenvironment'. J Immunol Sci. 3:4–8. 2019. View Article : Google Scholar : | |
Zheng H, Zhan Y, Liu S, Lu J, Luo J, Feng J and Fan S: The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res. 37:2262018. View Article : Google Scholar : PubMed/NCBI | |
Tai YL, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang Q, Zhou S, Xu H, Wang D, Feng J, Zhao J and Zhong S: Circular RNA expression in exosomes derived from breast cancer cells and patients. Epigenomics. 11:411–421. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Lei K, Huang F, Jiang Z and Zhou X: Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer. 18:562019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432:237–250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Yang T and Xiao J: Circular RNAs: Promising biomarkers for human diseases. EBioMedicine. 34:267–274. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Yu F and Li P: Circular RNAs: Characteristics, function and clinical significance in hepatocellular carcinoma. Cancers (Basel). 10:E2582018. View Article : Google Scholar | |
Huang Z, Su R, Qing C, Peng Y, Luo Q and Li J: Plasma circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as diagnostic biomarkers for active tuberculosis. Front Microbiol. 9:20102018. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer E, Douet-Guilbert N and De Braekeleer M: RARA fusion genes in acute promyelocytic leukemia: A review. Expert Rev Hematol. 7:347–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dal Molin A, Bresolin S, Gaffo E, Tretti C, Boldrin E, Meyer LH, Guglielmelli P, Vannucchi AM, Te Kronnie G and Bortoluzzi S: CircRNAs are here to stay: A perspective on the MLL recombinome. Front Genet. 10:882019. View Article : Google Scholar : | |
Babin L, Piganeau M, Renouf B, Lamribet K, Thirant C, Deriano L, Mercher T, Giovannangeli C and Brunet EC: Chromosomal translocation formation is sufficient to produce fusion circular RNAs specific to patient tumor cells. iScience. 5:19–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP: Oncogenic role of Fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 166:1055–1056. 2016. View Article : Google Scholar : PubMed/NCBI |