1
|
Zhou S, Wang F, Wong ET, Fonkem E, Hsieh
TC, Wu JM and Wu E: Salinomycin: A novel anti-cancer agent with
known anti-coccidial activities. Curr Med Chem. 20:4095–4101. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Y, Liu L, Li F, Wu T, Jiang H, Jiang
X, Du X and Wang Y: Salinomycin exerts anticancer effects on PC-3
cells and PC-3-derived cancer stem cells in vitro and in vivo.
BioMed Res Int. 2017:41016532017.PubMed/NCBI
|
3
|
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S,
Pan Y and Li Y: Salinomycin enhances doxorubicin sensitivity
through reversing the epithelial-mesenchymal transition of
cholangiocarcinoma cells by regulating ARK5. Braz J Med Biol Res.
50:e61472017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Verdoodt B, Vogt M, Schmitz I, Liffers ST,
Tannapfel A and Mirmohammadsadegh A: Salinomycin induces autophagy
in colon and breast cancer cells with concomitant generation of
reactive oxygen species. PLoS One. 7:e441322012. View Article : Google Scholar : PubMed/NCBI
|
5
|
McCarroll JA, Phillips PA, Kumar RK, Park
S, Pirola RC, Wilson JS and Apte MV: Pancreatic stellate cell
migration: Role of the phosphatidylinositol 3-kinase(PI3-kinase)
pathway. Biochem Pharmacol. 67:1215–1225. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gupta PB, Onder TT, Jiang G, Tao K,
Kuperwasser C, Weinberg RA and Lander ES: Identification of
selective inhibitors of cancer stem cells by high-throughput
screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Antoszczak M, Urbaniak A, Delgado M, Maj
E, Borgström B, Wietrzyk J, Huczyński A, Yuan Y, Chambers TC and
Strand D: Biological activity of doubly modified salinomycin
analogs - Evaluation in vitro and ex vivo. Eur J Med Chem.
156:510–523. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Urbaniak A, Delgado M, Antoszczak M,
Huczyński A and Chambers TC: Salinomycin derivatives exhibit
activity against primary acute lymphoblastic leukemia (ALL) cells
in vitro. Biomed Pharmacother. 99:384–390. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Roy M, Chen H and Sippel RS: Current
understanding and management of medullary thyroid cancer.
Oncologist. 18:1093–1100. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nozhat Z and Hedayati M: Medullary thyroid
carcinoma: A review on ethical considerations in treatment of
children. J Pediatr Endocrinol Metab. 29:633–639. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Priya SR, Dravid CS, Digumarti R and
Dandekar M: Targeted therapy for medullary thyroid cancer: A
review. Front Oncol. 7:2382017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wells SA Jr, Pacini F, Robinson BG and
Santoro M: Multiple endocrine neoplasia type 2 and familial
medullary thyroid carcinoma: An update. J Clin Endocrinol Metab.
98:3149–3164. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nelkin B: Recent advances in the biology
and therapy of medullary thyroid carcinoma. F1000 Res. 6:21842017.
View Article : Google Scholar
|
14
|
Roskoski R Jr and Sadeghi-Nejad A: Role of
RET protein-tyrosine kinase inhibitors in the treatment RET-driven
thyroid and lung cancers. Pharmacol Res. 128:1–17. 2018. View Article : Google Scholar
|
15
|
Moura MM, Cavaco BM, Pinto AE and Leite V:
High prevalence of RAS mutations in RET-negative sporadic medullary
thyroid carcinomas. J Clin Endocrinol Metab. 96:E863–E868. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Salvatore D, Melillo RM, Monaco C,
Visconti R, Fenzi G, Vecchio G, Fusco A and Santoro M: Increased in
vivo phosphorylation of ret tyrosine 1062 is a potential
pathogenetic mechanism of multiple endocrine neoplasia type 2B.
Cancer Res. 61:1426–1431. 2001.PubMed/NCBI
|
17
|
de Groot JWB, Links TP, Plukker JTM, Lips
CJM and Hofstra RMW: RET as a diagnostic and therapeutic target in
sporadic and hereditary endocrine tumors. Endocr Rev. 27:535–560.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kramer ER, Aron L, Ramakers GMJ, Seitz S,
Zhuang X, Beyer K, Smidt MP and Klein R: Absence of Ret signaling
in mice causes progressive and late degeneration of the
nigrostriatal system. PLoS Biol. 5:e392007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y, Stokes A, Duan Z, Hui J, Xu Y,
Chen Y, Chen HW, Lam K and Zhou CJ: LDL receptor-related protein 6
modulates Ret proto-oncogene signaling in renal development and
cystic dysplasia. J Am Soc Nephrol. 27:417–427. 2016. View Article : Google Scholar
|
20
|
Elisei R, Schlumberger MJ, Müller SP,
Schöffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V,
Kreissl MC, et al: Cabozantinib in progressive medullary thyroid
cancer. J Clin Oncol. 31:3639–3646. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Grabowski P, Briest F, Baum RP, Zaknun JJ,
Kulkarni HR, Zeitz M and Hörsch D: Vandetanib therapy in medullary
thyroid cancer. Drugs Today (Barc). 48:723–733. 2012. View Article : Google Scholar
|
22
|
Wells SA Jr, Robinson BG, Gagel RF, Dralle
H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR,
et al: Vandetanib in patients with locally advanced or metastatic
medullary thyroid cancer: A randomized, double-blind phase III
trial. J Clin Oncol. 30:134–141. 2012. View Article : Google Scholar
|
23
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar :
|
24
|
Novellasdemunt L, Antas P and Li VSW:
Targeting Wnt signaling in colorectal cancer. A review in the
theme: Cell signaling: Proteins, pathways and mechanisms. Am J
Physiol Cell Physiol. 309:C511–C521. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takigawa Y and Brown AMC: Wnt signaling in
liver cancer. Curr Drug Targets. 9:1013–1024. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sastre-Perona A and Santisteban P:
Wnt-independent role of β-catenin in thyroid cell proliferation and
differentiation. Mol Endocrinol. 28:681–695. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sastre-Perona A and Santisteban P: Role of
the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne).
3:312012. View Article : Google Scholar
|
28
|
Huczyński A, Antoszczak M, Kleczewska N,
Lewandowska M, Maj E, Stefańska J, Wietrzyk J, Janczak J and
Celewicz L: Synthesis and biological activity of salinomycin
conjugates with floxuridine. Eur J Med Chem. 93:33–41. 2015.
View Article : Google Scholar
|
29
|
Meireles AM, Preto A, Rocha AS, Rebocho
AP, Máximo V, Pereira-Castro I, Moreira S, Feijão T, Botelho T,
Marques R, et al: Molecular and genotypic characterization of human
thyroid follicular cell carcinoma-derived cell lines. Thyroid.
17:707–715. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kumarasamy VM and Sun D: Demonstration of
a potent RET transcriptional inhibitor for the treatment of
medullary thyroid carcinoma based on an ellipticine derivative. Int
J Oncol. 51:145–157. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lauf PK, Alqahtani T, Flues K, Meller J
and Adragna NC: Interaction between Na-K-ATPase and Bcl-2 proteins
BclXL and Bak. Am J Physiol Cell Physiol. 308:C51–C60. 2015.
View Article : Google Scholar
|
32
|
Ando Y, Tomaru Y, Morinaga A, Burroughs
AM, Kawaji H, Kubosaki A, Kimura R, Tagata M, Ino Y, Hirano H, et
al: Nuclear pore complex protein mediated nuclear localization of
dicer protein in human cells. PLoS One. 6:e233852011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shin YJ, Kumarasamy V, Camacho D and Sun
D: Involvement of G-quadruplex structures in regulation of human
RET gene expression by small molecules in human medullary thyroid
carcinoma TT cells. Oncogene. 34:1292–1299. 2015. View Article : Google Scholar
|
34
|
Schweppe RE: Thyroid cancer cell line
misidentification: An update. J Clin Endocrinol Metab. 98:956–957.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
de Jonge HJM, Fehrmann RSN, de Bont ESJM,
Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te
Meerman GJ and ter Elst A: Evidence based selection of housekeeping
genes. PLoS One. 2:e8982007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fusco A, Grieco M, Santoro M, Berlingieri
MT, Pilotti S, Pierotti MA, Della Porta G and Vecchio G: A new
oncogene in human thyroid papillary carcinomas and their
lymph-nodal metastases. Nature. 328:170–172. 1987. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nikiforov YE: RET/PTC rearrangement in
thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nikiforov YE: Thyroid carcinoma: Molecular
pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43.
2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Plaza-Menacho I, Burzynski GM, de Groot
JW, Eggen BJL and Hofstra RMW: Current concepts in RET-related
genetics, signaling and therapeutics. Trends Genet. 22:627–636.
2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
McIlwain DR, Berger T and Mak TW: Caspase
functions in cell death and disease. Cold Spring Harb Perspect
Biol. 5:a0086562013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fracchiolla NS, Bamonti Catena F,
Novembrino C, Ippolito S, Maisonneuve P and Cortelezzi A: Possible
association between reactive oxygen metabolites and karyotypic
abnormalities in myelodysplastic syndromes. Haematologica.
88:594–597. 2003.PubMed/NCBI
|
42
|
Mittler R, Vanderauwera S, Suzuki N,
Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V and Van
Breusegem F: ROS signaling: The new wave? Trends Plant Sci.
16:300–309. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
D'Autréaux B and Toledano MB: ROS as
signalling molecules: Mechanisms that generate specificity in ROS
homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Antoszczak M, Maj E, Stefańska J, et al:
Synthesis, antiproliferative and antibacterial activity of new
amides of salinomycin. Bioorganic Med Chem Lett. 24:1724–1729
|
45
|
Gujral TS, van Veelen W, Richardson DS,
Myers SM, Meens JA, Acton DS, Duñach M, Elliott BE, Höppener JW and
Mulligan LM: A novel RET kinase-β-catenin signaling pathway
contributes to tumorigenesis in thyroid carcinoma. Cancer Res.
68:1338–1346. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ
and Carson DA: Salinomycin inhibits Wnt signaling and selectively
induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl
Acad Sci USA. 108:13253–13257. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lu W, Lin C, Roberts MJ, Waud WR, Piazza
GA and Li Y: Niclosamide suppresses cancer cell growth by inducing
Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin
pathway. PLoS One. 6:e292902011. View Article : Google Scholar
|
48
|
Chen M, Wang J, Lu J, Bond MC, Ren XR,
Lyerly HK, Barak LS and Chen W: The anti-helminthic niclosamide
inhibits Wnt/Frizzled1 signaling. Biochemistry. 48:10267–10274.
2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hong D, Ye L, Gagel R, Chintala L, El
Naggar AK, Wright J and Kurzrock R: Medullary thyroid cancer:
Targeting the RET kinase pathway with sorafenib/tipifarnib. Mol
Cancer Ther. 7:1001–1006. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Markowitz JN and Fancher KM: Cabozantinib:
A multitargeted oral tyrosine kinase inhibitor. Pharmacotherapy.
38:357–369. 2018. View Article : Google Scholar
|
51
|
Cooper MR, Yi SY, Alghamdi W, Shaheen DJ
and Steinberg M: Vandetanib for the treatment of medullary thyroid
carcinoma. Ann Pharmacother. 48:387–394. 2014. View Article : Google Scholar
|
52
|
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi
Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, et al: Cabozantinib
(XL184), a novel MET and VEGFR2 inhibitor, simultaneously
suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer
Ther. 10:2298–2308. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Maliszewska A, Leandro-Garcia LJ,
Castelblanco E, Macià A, de Cubas A, Goméz-López G, Inglada-Pérez
L, Álvarez-Escolá C, De la Vega L, Letón R, et al: Differential
gene expression of medullary thyroid carcinoma reveals specific
markers associated with genetic conditions. Am J Pathol.
182:350–362. 2013. View Article : Google Scholar
|
54
|
Yang D, Wang C, Luo Y, Li X, Song Q, Zhang
J and Xin S: Activated E2F activity induces cell death in papillary
thyroid carcinoma K1 cells with enhanced Wnt signaling. PLoS One.
12:e01789082017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Malumbres M and Barbacid M: Cell cycle,
CDKs and cancer: A changing paradigm. Nat Rev Cancer. 9:153–166.
2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bertoli C, Skotheim JM and de Bruin RAM:
Control of cell cycle transcription during G1 and S phases. Nat Rev
Mol Cell Biol. 14:518–528. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kim KY, Park KI, Kim SH, Yu SN, Park SG,
Kim YW, Seo YK, Ma JY and Ahn SC: Inhibition of autophagy promotes
sali-nomycin-induced apoptosis via reactive oxygen species-mediated
PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human
prostate cancer cells. Int J Mol Sci. 18:E10882017. View Article : Google Scholar
|
58
|
Kim SH, Choi YJ, Kim KY, Yu SN, Seo YK,
Chun SS, Noh KT, Suh JT and Ahn SC: Salinomycin simultaneously
induces apoptosis and autophagy through generation of reactive
oxygen species in osteosarcoma U2OS cells. Biochem Biophys Res
Commun. 473:607–613. 2016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Polakis P: Wnt signaling and cancer. Genes
Dev. 14:1837–1851. 2000.PubMed/NCBI
|
60
|
Fahim M, del Valle G and Pressman BC:
Comparison of the effects of the ionophore salinomycin and
adrenaline on the haemodynamics and work efficiency of the dog
heart. Cardiovasc Res. 20:145–152. 1986. View Article : Google Scholar : PubMed/NCBI
|