1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeGraff DJ, Cates JM, Mauney JR, Clark PE,
Matusik RJ and Adam RM: When urothelial differentiation pathways go
wrong: Implications for bladder cancer development and progression.
Urol Oncol. 31:802–811. 2013. View Article : Google Scholar
|
3
|
Rosenberg JE and Hahn WC: Bladder cancer:
Modeling and translation. Genes Dev. 23:655–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
van Rhijn BW, Burger M, Lotan Y, Solsona
E, Stief CG, Sylvester RJ, Witjes JA and Zlotta AR: Recurrence and
progres-sion of disease in non-muscle-invasive bladder cancer: From
epidemiology to treatment strategy. Eur Urol. 56:430–442. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Dibble CC and Manning BD: Signal
integration by mTORC1 coordinates nutrient input with biosynthetic
output. Nat Cell Biol. 15:555–564. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Janku F, Wheler JJ, Naing A, Falchook GS,
Hong DS, Stepanek VM, Fu S, Piha-Paul SA, Lee JJ, Luthra R, et al:
PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR
signaling pathway inhibitors in early-phase clinical trials. Cancer
Res. 73:276–284. 2013. View Article : Google Scholar
|
7
|
Liu P, Cheng H, Roberts TM and Zhao JJ:
Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev
Drug Discov. 8:627–644. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Sathe A and Nawroth R: Targeting the
PI3K/AKT/mTOR pathway in bladder cancer. Methods Mol Biol.
1655:335–350. 2018. View Article : Google Scholar
|
9
|
Cheng TC, Din ZH, Su JH, Wu YJ and Liu CI:
Sinulariolide suppresses cell migration and invasion by inhibiting
matrix metalloproteinase-2/-9 and urokinase through the
PI3K/AKT/mTOR signaling pathway in human bladder cancer cells. Mar
Drugs. 15:E2382017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Schettini F, Buono G, Trivedi MV, De
Placido S, Arpino G and Giuliano M: PI3K/mTOR inhibitors in the
treatment of luminal breast cancer Why, when and to whom? Breast
Care (Basel). 12:290–294. 2017. View Article : Google Scholar
|
11
|
Gasparri ML, Bardhi E, Ruscito I, Papadia
A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD and
Benedetti Panici P: PI3K/AKT/mTOR pathway in ovarian cancer
treatment: Are we on the right track? Geburtshilfe Frauenheilkd.
77:1095–1103. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang L, Graham PH, Ni J, Hao J, Bucci J,
Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the
treatment of prostate cancer radioresistance. Crit Rev Oncol
Hematol. 96:507–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cheng H, Shcherba M, Pendurti G, Liang Y,
Piperdi B and Perez-Soler R: Targeting the PI3K/AKT/mTOR pathway:
Potential for lung cancer treatment. Lung Cancer Manag. 3:67–75.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mu DW, Guo HQ, Zhou GB, Li JY and Su B:
Oleanolic acid suppresses the proliferation of human bladder cancer
by Akt/mTOR/S6K and ERK1/2 signaling. Int J Clin Exp Pathol.
8:13864–13870. 2015.
|
15
|
Costa C, Pereira S, Lima L, Peixoto A,
Fernandes E, Neves D, Neves M, Gaiteiro C, Tavares A, Gil da Costa
RM, et al: Abnormal protein glycosylation and activated
PI3K/Akt/mTOR pathway: Role in bladder cancer prognosis and
targeted therapeutics. PLoS One. 10:e01412532015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu FX, Zhao B and Guan KL: Hippo pathway
in organ size control, tissue homeostasis, and cancer. Cell.
163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao B, Li L, Tumaneng K, Wang CY and Guan
KL: A coordinated phosphorylation by Lats and CK1 regulates YAP
stability through SCF (beta-TRCP). Genes Dev. 24:72–85. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu
J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates
YAP-dependent gene induction and growth control. Genes Dev.
22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ,
Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF, et al:
Overexpression of YAP 1 contributes to progressive features and
poor prognosis of human urothelial carcinoma of the bladder. BMC
Cancer. 13:3492013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Latz S, Umbach T, Goltz D, Kristiansen G,
Müller SC and Ellinger J: Cytoplasmatic and nuclear YAP1 and pYAP1
staining in urothelial bladder cancer. Urol Int. 96:39–45. 2016.
View Article : Google Scholar
|
21
|
Li S, Yu Z, Chen SS, Li F, Lei CY, Chen
XX, Bao JM, Luo Y, Lin GZ, Pang SY and Tan WL: The YAP1 oncogene
contributes to bladder cancer cell proliferation and migration by
regulating the H19 long noncoding RNA. Urol Oncol. 33:427.e1–e10.
2015. View Article : Google Scholar
|
22
|
Wei W, Sun HH, Li N, Li HY, Li X, Li Q and
Shen XH: WNT5A modulates cell cycle progression and contributes to
the chemo-resistance in pancreatic cancer cells. Hepatobiliary
Pancreat Dis Int. 13:529–538. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xin B, He X, Wang J, Cai J, Wei W, Zhang T
and Shen X: Nerve growth factor regulates CD133 function to promote
tumor cell migration and invasion via activating ERK1/2 signaling
in pancreatic cancer. Pancreatology. 16:1005–1014. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Suriano F, Altobelli E, Sergi F and
Buscarini M: Bladder cancer after radiotherapy for prostate cancer.
Rev Urol. 15:108–112. 2013.PubMed/NCBI
|
25
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Park SJ, Lee TJ and Chang IH: Role of the
mTOR pathway in the progression and recurrence of bladder cancer:
An immunohis-tochemical tissue microarray study. Korean J Urol.
52:466–473. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Averous J and Proud CG: When translation
meets transformation. The mTOR story Oncogene. 25:6423–6435. 2006.
View Article : Google Scholar
|
28
|
Das A, Reis F, Maejima Y, Cai Z and Ren J:
mTOR Signaling in cardiometabolic disease, cancer, and aging. Oxid
Med Cell Longev. 2017:60186752017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Peng J, Ma W, Zhou Z, Gu Y, Lu Z, Zhang R
and Pan Z: Genetic variations in the PI3K/PTEN/AKT/mTOR pathway
predict tumor response and disease-free survival in locally
advanced rectal cancer patients receiving preoperative
chemoradiotherapy and radical surgery. J Cancer. 9:1067–1077. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang YH, Li B, Shen L, Shen Y and Chen
XD: The role and clinical significance of YES-associated protein 1
in human osteosarcoma. Int J Immunopathol Pharmacol. 26:157–167.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xia J, Zeng M, Zhu H, Chen X, Weng Z and
Li S: Emerging role of Hippo signalling pathway in bladder cancer.
J Cell Mol Med. 22:4–15. 2018. View Article : Google Scholar :
|
32
|
Lv M, Chen L, Qin T, Zhang X, Liu P and
Yang J: Angiomotin promotes breast cancer cell proliferation and
invasion. Oncol Rep. 33:1938–1946. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Makhlin I, Zhang J, Long CJ, Devarajan K,
Zhou Y, Klein-Szanto AJ, Huang M, Chernoff J and Boorjian SA: The
mTOR pathway affects proliferation and chemosensitivity of
urothelial carcinoma cells and is upregulated in a subset of human
bladder cancers. BJU Int. 108:E84–E90. 2011. View Article : Google Scholar :
|
34
|
Frescas D and Pagano M: Deregulated
proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the
scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chan CH, Morrow JK, Zhang S and Lin HK:
Skp2: A dream target in the coming age of cancer therapy. Cell
Cycle. 13:679–680. 2014. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen
W, Luo J, Yang F, Wang Y and Guan X: Skp2 is overexpressed in
breast cancer and promotes breast cancer cell proliferation. Cell
Cycle. 15:1344–1351. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang S, Chen Q, Liu Q, Li Y, Sun X, Hong
L, Ji S, Liu C, Geng J, Zhang W, et al: Hippo signaling suppresses
cell ploidy and tumorigenesis through Skp2. Cancer Cell.
31:669–684.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|