1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691. 2017.
View Article : Google Scholar
|
3
|
Spano JP, Lagorce C, Atlan D, Milano G,
Domont J, Benamouzig R, Attar A, Benichou J, Martin A, Morere JF,
et al: Impact of EGFR expression on colorectal cancer patient
prognosis and survival. Ann Oncol. 16:102–108. 2005. View Article : Google Scholar
|
4
|
Vignot S and Spano JP: Prognostic value of
EGFR in colorectal cancer. Bull Cancer. 92:S13–S16. 2005.In
French.
|
5
|
Emani MK and Zaiden RA Jr: Aseptic
meningitis: A rare side effect of cetuximab therapy. J Oncol Pharm
Pract. 19:178–180. 2013. View Article : Google Scholar
|
6
|
Huxley N, Crathorne L, Varley-Campbell J,
Tikhonova I, Snowsill T, Briscoe S, Peters J, Bond M, Napier M and
Hoyle M: The clinical effectiveness and cost-effectiveness of
cetuximab (review of technology appraisal no. 176) and panitumumab
(partial review of technology appraisal no. 240) for previously
untreated metastatic colorectal cancer: A systematic review and
economic evaluation. Health Technol Assess. 21:1–294. 2017.
View Article : Google Scholar
|
7
|
Cunningham D, Humblet Y, Siena S, Khayat
D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype
C, et al: Cetuximab monotherapy and cetuximab plus irinotecan in
irinotecan-refractory metastatic colorectal cancer. N Engl J Med.
351:337–345. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stremitzer S, Sebio A, Stintzing S and
Lenz HJ: Panitumumab safety for treating colorectal cancer. Expert
Opin Drug Saf. 13:843–851. 2014.PubMed/NCBI
|
9
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Prasad S and Tyagi AK: Ginger and its
constituents: Role in prevention and treatment of gastrointestinal
cancer. Gastroenterol Res Pract. 2015:1429792015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ali BH, Blunden G, Tanira MO and Nemmar A:
Some phytochemical, pharmacological and toxicological properties of
ginger (Zingiber officinale Roscoe): A review of recent research.
Food Chem Toxicol. 46:409–420. 2008. View Article : Google Scholar
|
12
|
Kaur IP, Deol PK, Kondepudi KK and Bishnoi
M: Anticancer Potential of Ginger: Mechanistic and Pharmaceutical
Aspects. Curr Pharm Des. 22:4160–4172. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao WZ, Zhang RX, Yu ZP, Wang XK, Li JR
and Liu JB: Research process in ginger chemical composition and
biological activity. Sci Techn Food Ind. 11:383–389. 2016.In
Chinese.
|
14
|
Eren D and Betul YM: Revealing the effect
of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and
β-catenin pathway in A549 cell line. Chem Biol Interact.
258:257–265. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma
X, Du Z, Li J, Duan Y and Du G: Gingerol Reverses the
Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a
Urethane-Induced Lung Carcinogenic Model. J Agric Food Chem.
64:6203–6211. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Al-Abbasi FA, Alghamdi EA, Baghdadi MA,
Alamoudi AJ, El-Halawany AM, El-Bassossy HM, Aseeri AH and Al-Abd
AM: Gingerol Synergizes the Cytotoxic Effects of Doxorubicin
against Liver Cancer Cells and Protects from Its Vascular Toxicity.
Molecules. 21:212016. View Article : Google Scholar
|
17
|
Kapoor V, Aggarwal S and Das SN:
6-Gingerol Mediates its Anti Tumor Activities in Human Oral and
Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest.
Phytother Res. 30:588–595. 2016. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Jeong CH, Bode AM, Pugliese A, Cho YY, Kim
HG, Shim JH, Jeon YJ, Li H, Jiang H and Dong Z: [6]-Gingerol
suppresses colon cancer growth by targeting leukotriene A4
hydrolase. Cancer Res. 69:5584–5591. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
de Lima RMT, Dos Reis AC, de Menezes APM,
Santos JVO, Filho JWGO, Ferreira JRO, de Alencar MVOB, da Mata
AMOF, Khan IN, Islam A, et al: Protective and therapeutic potential
of ginger (Zingiber officinale) extract and [6]-gingerol in cancer:
A comprehensive review. Phytother Res. 32:1885–1907. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Qi LW, Zhang Z, Zhang CF, Anderson S, Liu
Q, Yuan CS and Wang CZ: Anti-Colon Cancer Effects of 6-Shogaol
Through G2/M Cell Cycle Arrest by p53/p21-cdc2/cdc25A Crosstalk. Am
J Chin Med. 43:743–756. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kotowski U, Kadletz L, Schneider S, Foki
E, Schmid R, Seemann R, Thurnher D and Heiduschka G: 6-shogaol
induces apoptosis and enhances radiosensitivity in head and neck
squamous cell carcinoma cell lines. Phytother Res. 32:340–347.
2018. View
Article : Google Scholar
|
22
|
Zhou L, Qi L, Jiang L, Zhou P, Ma J, Xu X
and Li P: Antitumor activity of gemcitabine can be potentiated in
pancreatic cancer through modulation of TLR4/NF-κB signaling by
6-shogaol. AAPS J. 16:246–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS,
Pichika MR, Bradshaw TD and Leong CO: 6-Shogaol inhibits breast and
colon cancer cell proliferation through activation of peroxisomal
proliferator activated receptor γ (PPARγ). Cancer Lett.
336:127–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim MO, Lee MH, Oi N, Kim SH, Bae KB,
Huang Z, Kim DJ, Reddy K, Lee SY, Park SJ, et al: [6]-shogaol
inhibits growth and induces apoptosis of non-small cell lung cancer
cells by directly regulating Akt1/2. Carcinogenesis. 35:683–691.
2014. View Article : Google Scholar
|
25
|
Bernard MM, McConnery JR and Hoskin DW:
[10]-Gingerol, a major phenolic constituent of ginger root, induces
cell cycle arrest and apoptosis in triple-negative breast cancer
cells. Exp Mol Pathol. 102:370–376. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Martin ACBM, Fuzer AM, Becceneri AB, da
Silva JA, Tomasin R, Denoyer D, Kim SH, McIntyre KA, Pearson HB,
Yeo B, et al: [10]-gingerol induces apoptosis and inhibits
metastatic dissemination of triple negative breast cancer in vivo.
Oncotarget. 8:72260–72271. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Joo JH, Hong SS, Cho YR and Seo DW:
10-Gingerol inhibits proliferation and invasion of MDA-MB-231
breast cancer cells through suppression of Akt and
p38MAPK activity. Oncol Rep. 35:779–784. 2016.
View Article : Google Scholar
|
28
|
Ryu MJ and Chung HS: [10]-Gingerol induces
mitochondrial apoptosis through activation of MAPK pathway in
HCT116 human colon cancer cells. In Vitro Cell Dev Biol Anim.
51:92–101. 2015. View Article : Google Scholar
|
29
|
Chen CY, Li YW and Kuo SY: Effect of
[10]-gingerol on [ca2+]i and cell death in human colorectal cancer
cells. Molecules. 14:959–969. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dugasani S, Pichika MR, Nadarajah VD,
Balijepalli MK, Tandra S and Korlakunta JN: Comparative antioxidant
and anti-inflammatory effects of [6]-gingerol, [8]-gingerol,
[10]-gingerol and [6]-shogaol. J Ethnopharmacol. 127:515–520. 2010.
View Article : Google Scholar
|
31
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar
|
32
|
Lin CB, Lin CC and Tsay GJ: 6-Gingerol
Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M
Arrest. Evid Based Complement Alternat Med. 2012:3260962012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee SH, Cekanova M and Baek SJ: Multiple
mechanisms are involved in 6-gingerol-induced cell growth arrest
and apoptosis in human colorectal cancer cells. Mol Carcinog.
47:197–208. 2008. View
Article : Google Scholar :
|
34
|
Arango D, Corner GA, Wadler S, Catalano PJ
and Augenlicht LH: c-myc/p53 interaction determines sensitivity of
human colon carcinoma cells to 5-fluorouracil in vitro and in vivo.
Cancer Res. 61:4910–4915. 2001.PubMed/NCBI
|
35
|
Iacopetta B: TP53 mutation in colorectal
cancer. Hum Mutat. 21:271–276. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lowery FJ and Yu D: Growth factor
signaling in metastasis: Current understanding and future
opportunities. Cancer Metastasis Rev. 31:479–491. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cataldo VD, Gibbons DL, Pérez-Soler R and
Quintás-Cardama A: Treatment of non-small-cell lung cancer with
erlotinib or gefitinib. N Engl J Med. 364:947–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lurje G and Lenz HJ: EGFR signaling and
drug discovery. Oncology. 77:400–410. 2009. View Article : Google Scholar
|
39
|
Chong CR and Jänne PA: The quest to
overcome resistance to EGFR-targeted therapies in cancer. Nat Med.
19:1389–1400. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Park OK, Schaefer TS and Nathans D: In
vitro activation of Stat3 by epidermal growth factor receptor
kinase. Proc Natl Acad Sci USA. 93:13704–13708. 1996. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jackson NM and Ceresa BP: EGFR-mediated
apoptosis via STAT3. Exp Cell Res. 356:93–103. 2017.PubMed/NCBI
|
43
|
Sirkisoon SR, Carpenter RL, Rimkus T,
Miller L, Metheny-Barlow L and Lo HW: EGFR and HER2 signaling in
breast cancer brain metastasis. Front Biosci (Elite Ed). 8:245–263.
2016.
|
44
|
Radha G and Raghavan SC: BCL2: A promising
cancer therapeutic target. Biochim Biophys Acta Rev Cancer.
1868:309–314. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang E, Korsmeyer SJ and Korsmeyer EYaSJ:
Molecular Thanatopsis: A Discourse on the BCLZ Family and Cell
Death. Blood. 88:386–401. 1996. View Article : Google Scholar : PubMed/NCBI
|
46
|
Englert C, Hou X, Maheswaran S, Bennett P,
Ngwu C, Re GG, Garvin AJ, Rosner MR and Haber DA: WT1 suppresses
synthesis of the epidermal growth factor receptor and induces
apoptosis. EMBO J. 14:4662–4675. 1995. View Article : Google Scholar : PubMed/NCBI
|