1
|
Bhat M, Robichaud N, Hulea L, Sonenberg N,
Pelletier J and Topisirovic I: Targeting the translation machinery
in cancer. Nat Rev Drug Discov. 14:261–278. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chu J and Pelletier J: Therapeutic
opportunities in eukaryotic translation. Cold Spring Harb Perspect
Biol. 10:pp. a0329952018, View Article : Google Scholar : PubMed/NCBI
|
3
|
Waskiewicz AJ, Johnson JC, Penn B,
Mahalingam M, Kimball SR and Cooper JA: Phosphorylation of the
cap-binding protein eukaryotic translation initiation factor 4E by
protein kinase Mnk1 in vivo. Mol Cell Biol. 19:1871–1880. 1999.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Waskiewicz AJ, Flynn A, Proud CG and
Cooper JA: Mitogen-activated protein kinases activate the
serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920. 1997.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Pyronnet S, Imataka H, Gingras AC,
Fukunaga R, Hunter T and Sonenberg N: Human eukaryotic translation
initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E.
EMBO J. 18:270–279. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Siddiqui N and Sonenberg N: Signalling to
eIF4E in cancer. Biochem Soc Trans. 43:763–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Napoli I, Mercaldo V, Boyl PP, Eleuteri B,
Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, et
al: The fragile X syndrome protein represses activity-dependent
translation through CYFIP1, a new 4E-BP. Cell. 134:1042–1054. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Jauch R, Jäkel S, Netter C, Schreiter K,
Aicher B, Jäckle H and Wahl MC: Crystal structures of the Mnk2
kinase domain reveal an inhibitory conformation and a zinc binding
site. Structure. 13:1559–1568. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jauch R, Cho MK, Jäkel S, Netter C,
Schreiter K, Aicher B, Zweckstetter M, Jäckle H and Wahl MC:
Mitogen-activated protein kinases interacting kinases are
autoinhibited by a reprogrammed activation segment. EMBO J.
25:4020–4032. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ueda T, Watanabe-Fukunaga R, Fukuyama H,
Nagata S and Fukunaga R: Mnk2 and Mnk1 are essential for
constitutive and inducible phosphorylation of eukaryotic initiation
factor 4E but not for cell growth or development. Mol Cell Biol.
24:6539–6549. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Diab S, Kumarasiri M, Yu M, Teo T, Proud
C, Milne R and Wang S: MAP kinase-interacting kinases-emerging
targets against cancer. Chem Biol. 21:441–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ben-David Y and Bernstein A: Friend
virus-induced erythro-leukemia and the multistage nature of cancer.
Cell. 66:831–834. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ben-David Y, Giddens EB and Bernstein A:
Identification and mapping of a common proviral integration site
Fli-1 in erythro-leukemia cells induced by Friend murine leukemia
virus. Proc Natl Acad Sci USA. 87:1332–1336. 1990. View Article : Google Scholar
|
14
|
Ben-David Y, Giddens EB, Letwin K and
Bernstein A: Erythroleukemia induction by Friend murine leukemia
virus: Insertional activation of a new member of the ets gene
family, Fli-1, closely linked to c-ets-1. Genes Dev. 5:908–918.
1991. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Y, Luo H, Liu T, Zacksenhaus E and
Ben-David Y: The ets transcription factor Fli-1 in development,
cancer and disease. Oncogene. 34:2022–2031. 2015. View Article : Google Scholar
|
16
|
Lou N, Lennard Richard ML, Yu J, Kindy M
and Zhang XK: The Fli-1 transcription factor is a critical
regulator for controlling the expression of chemokine C-X-C motif
ligand 2 (CXCL2). Mol Immunol. 81:59–66. 2017. View Article : Google Scholar
|
17
|
Sato S and Zhang XK: The Friend leukaemia
virus integration 1 (Fli-1) transcription factor affects lupus
nephritis development by regulating inflammatory cell infiltration
into the kidney. Clin Exp Immunol. 177:102–109. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu T, Yao Y, Zhang G, Wang Y, Deng B,
Song J, Li X, Han F, Xiao X, Yang J, et al: A screen for Fli-1
transcriptional modulators identifies PKC agonists that induce
erythroid to megakaryocytic differentiation and suppress
leukemogenesis. Oncotarget. 8:16728–16743. 2017.PubMed/NCBI
|
19
|
Cui JW, Vecchiarelli-Federico LM, Li YJ,
Wang GJ and Ben-David Y: Continuous Fli-1 expression plays an
essential role in the proliferation and survival of F-MuLV-induced
erythroleukemia and human erythroleukemia. Leukemia. 23:1311–1319.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li YJ, Zhao X, Vecchiarelli-Federico LM,
Li Y, Datti A, Cheng Y and Ben-David Y: Drug-mediated inhibition of
Fli-1 for the treatment of leukemia. Blood Cancer J. 2:e542012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu T, Xia L, Yao Y, Yan C, Fan Y,
Gajendran B, Yang J, Li YJ, Chen J, Filmus J, et al: Identification
of diterpenoid compounds that interfere with Fli-1 DNA binding to
suppress leukemogen-esis. Cell Death Dis. 10:1172019. View Article : Google Scholar
|
22
|
Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao
X, Gajendran B, Xu D, Li YJ, Wang C, et al: Novel flavagline-like
compounds with potent Fli-1 inhibitory activity suppress diverse
types of leukemia. FEBS J. 285:4631–4645. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vecchiarelli-Federico LM, Liu T, Yao Y,
Gao Y, Li Y, Li YJ and Ben-David Y: Fli-1 overexpression in
erythroleukemic cells promotes erythroid de-differentiation while
Spi-1/PU.1 exerts the opposite effect. Int J Oncol. 51:456–466.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
De Benedetti A and Graff JR: eIF-4E
expression and its role in malignancies and metastases. Oncogene.
23:3189–3199. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cong XL and Han ZC: Survivin and leukemia.
Int J Hematol. 80:232–238. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ban J, Jug G, Mestdagh P, Schwentner R,
Kauer M, Aryee DN, Schaefer KL, Nakatani F, Scotlandi K, Reiter M,
et al: Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved
in a positive feedback loop in Ewing’s sarcoma. Oncogene.
30:2173–2180. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu P, Liang J, Yu F, Zhou Z, Tang J and Li
K: miR-145 promotes osteosarcoma growth by reducing expression of
the transcription factor friend leukemia virus integration 1.
Oncotarget. 7:42241–42251. 2016.PubMed/NCBI
|
28
|
Zhang J, Guo H, Zhang H, Wang H, Qian G,
Fan X, Hoffman AR, Hu JF and Ge S: Putative tumor suppressor
miR-145 inhibits colon cancer cell growth by targeting oncogene
Friend leukemia virus integration 1 gene. Cancer. 117:86–95. 2011.
View Article : Google Scholar
|
29
|
Larsson E, Fredlund Fuchs P, Heldin J,
Barkefors I, Bondjers C, Genové G, Arrondel C, Gerwins P, Kurschat
C, Schermer B, et al: Discovery of microvascular miRNAs using
public gene expression data: miR-145 is expressed in pericytes and
is a regulator of Fli1. Genome Med. 1:1082009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang S, Liu JC, Ju Y, Pellecchia G, Voisin
V, Wang DY, Leha LR, Ben-David Y, Bader GD and Zacksenhaus E:
microRNA-143/145 loss induces Ras signaling to promote aggressive
Pten-deficient basal-like breast cancer. JCI Insight. 2:933132017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wheatley SP and Altieri DC: Survivin at a
glance. J Cell Sci. 132:jcs2238262019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Garg H, Suri P, Gupta JC, Talwar GP and
Dubey S: Survivin: A unique target for tumor therapy. Cancer Cell
Int. 16:492016. View Article : Google Scholar : PubMed/NCBI
|