New drugs are not enough‑drug repositioning in oncology: An update
- Authors:
- Romina Gabriela Armando
- Diego Luis Mengual Gómez
- Daniel Eduardo Gomez
-
Affiliations: Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina - Published online on: January 20, 2020 https://doi.org/10.3892/ijo.2020.4966
- Pages: 651-684
-
Copyright: © Armando et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gupta SC, Sung B, Prasad S, Webb LJ and Aggarwal BB: Cancer drug discovery by repurposing: Teaching new tricks to old dogs. Trends Pharmacol Sci. 34:508–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hanusova V, Skalova L, Kralova V and Matouskova P: Potential anti-cancer drugs commonly used for other indications. Curr Cancer Drug Targets. 15:35–52. 2015. View Article : Google Scholar | |
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR and Schacht AL: How to improve R&D productivity: The pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 9:203–214. 2010. View Article : Google Scholar : PubMed/NCBI | |
Adams CP and Brantner VV: Estimating the cost of new drug development: Is it really 802 million dollars? Health Aff (Millwood). 25:420–428. 2006. View Article : Google Scholar | |
Nowak-Sliwinska P, Scapozza L and Ruiz IAA: Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer. 1871:434–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bertolini F, Sukhatme VP and Bouche G: Drug repurposing in oncology-patient and health systems opportunities. Nat Rev Clin Oncol. 12:732–742. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chong CR and Sullivan DJ Jr: New uses for old drugs. Nature. 448:645–646. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ashburn TT and Thor KB: Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 3:673–683. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shim JS and Liu JO: Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 10:654–663. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pantziarka P, Verbaanderd C, Sukhatme V, Rica Capistrano I, Crispino S, Gyawali B, Rooman I, Van Nuffel AM, Meheus L, Sukhatme VP and Bouche G: ReDO_DB: The repurposing drugs in oncology database. Ecancermedicalscience. 12:8862018. View Article : Google Scholar | |
Xue H, Li J, Xie H and Wang Y: Review of drug repositioning approaches and resources. Int J Biol Sci. 14:1232–1244. 2018. View Article : Google Scholar : PubMed/NCBI | |
Organization WH: WHO Model Lists of Essential Medicines, 2019. 2019. | |
Woodrow CJ, Haynes RK and Krishna S: Artemisinins. Postgrad Med J. 81:71–78. 2005. View Article : Google Scholar : PubMed/NCBI | |
White NJ: Anaemia and malaria. Malar J. 17:3712018. View Article : Google Scholar : PubMed/NCBI | |
Gunjan S, Sharma T, Yadav K, Chauhan BS, Singh SK, Siddiqi MI and Tripathi R: Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of plasmodium. Front Cell Infect Microbiol. 8:2562018. View Article : Google Scholar : | |
Jeong DE, Song HJ, Lim S, Lee SJ, Lim JE, Nam DH, Joo KM, Jeong BC, Jeon SS, Choi HY and Lee HW: Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget. 6:33046–33064. 2015. View Article : Google Scholar : PubMed/NCBI | |
Slezakova S and Ruda-Kucerova J: Anticancer activity of artemisinin and its derivatives. Anticancer Res. 37:5995–6003. 2017.PubMed/NCBI | |
Jiang F, Zhou JY, Zhang D, Liu MH and Chen YG: Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate-induced apop-tosis. Int J Mol Med. 42:1295–1304. 2018.PubMed/NCBI | |
Dell'Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A and Efferth T: Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesu-nate. Biochem Pharmacol. 68:2359–2366. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zheng L and Pan J: The Anti-malarial drug artesunate blocks Wnt/β-catenin pathway and inhibits growth, migration and invasion of uveal melanoma cells. Curr Cancer Drug Targets. 18:988–998. 2018. View Article : Google Scholar | |
Patyar S, Patyar RR, Medhi B and Khanduja KL: Chemopreventive effect of artesunate in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Adv Pharm Technol Res. 8:102–107. 2017.PubMed/NCBI | |
von Hagens C, Walter-Sack I, Goeckenjan M, Storch-Hagenlocher B, Sertel S, Elsässer M, Remppis BA, Munzinger J, Edler L, Efferth T, et al: Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine. 54:140–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhang XL, Zhang GH and Gao YF: Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142. Braz J Med Biol Res. 52:e79922019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, Wang Z and Wang SL: Artesunate suppresses the growth of prostatic cancer cells through inhibiting androgen receptor. Biol Pharm Bull. 40:479–485. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chauhan AK, Min KJ and Kwon TK: RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells. Mol Cell Biochem. 435:15–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, Ou R, Zhang G, Li F, Hu M, et al: Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 7:31413–31428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beccafico S, Morozzi G, Marchetti MC, Riccardi C, Sidoni A, Donato R and Sorci G: Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis. 36:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crespo-Ortiz MP and Wei MQ: Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012:2475972012. View Article : Google Scholar | |
Xia X, Fan X, Zhao M and Zhu P: The relationship between ferroptosis and tumors: A novel landscape for therapeutic approach. Curr Gene Ther. 19:117–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li Q, Wu J, Wang M and Yu J: Artemisinin and its derivatives as a repurposing anticancer agent: What Else Do We Need to Do? Molecules. 21:pii: E1331. 2016. | |
Zhou Y, Li W and Xiao Y: Profiling of multiple targets of arte-misinin activated by hemin in cancer cell proteome. ACS Chem Biol. 11:882–888. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al: 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62:2569–2581. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Yang X and Yan M: Synthesis and Structure-activity relationship study of antimicrobial auranofin against ESKAPE pathogens. J Med Chem. 62:7751–7768. 2019. View Article : Google Scholar : PubMed/NCBI | |
Emery P and Suarez-Almazor M: Rheumatoid arthritis. Clin Evid:. 1349–1371. 2003. | |
Roder C and Thomson MJ: Auranofin: Repurposing an old drug for a golden new age. Drugs R D. 15:13–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perez MVR, Roife D, Dai B, Pratt M, Dobrowolski R, Kang Y, Li X, Augustine JJ, Zielinski R, Priebe W and Fleming JB: Antineoplastic effects of auranofin in human pancreatic adeno-carcinoma preclinical models. Surgery Open Science. 1:56–63. 2019. View Article : Google Scholar | |
Pessetto ZY, Weir SJ, Sethi G, Broward MA and Godwin AK: Drug repurposing for gastrointestinal stromal tumor. Mol Cancer Ther. 12:1299–1309. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li H, Hu J, Wu S, Wang L, Cao X, Zhang X, Dai B, Cao M, Shao R, Zhang R, et al: Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget. 7:3548–3558. 2016. | |
Xiaobo C, Majidi M, Feng M, Shao R, Wang J, Zhao Y, Baladandayuthapani V, Song J, Fang B, Ji L, et al: TUSC2(FUS1)-erlotinib induced vulnerabilities in epidermal growth factor Receptor(EGFR) wildtype non-small cell lung cancer(NSCLC) targeted by the repurposed drug auranofin. Sci Rep. 6:357412016. View Article : Google Scholar : PubMed/NCBI | |
Mellemkjaer L, Linet MS, Gridley G, Frisch M, Møller H and Olsen JH: Rheumatoid arthritis and cancer risk. Eur J Cancer. 32A:1753–1757. 1996. View Article : Google Scholar : PubMed/NCBI | |
Porta C, Paglino C and Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 4:642014. View Article : Google Scholar : PubMed/NCBI | |
Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, et al: The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI | |
El Rashedy AA and Aboul-Enein HY: Benzimidazole derivatives as potential anticancer agents. Mini Rev Med Chem. 13:399–407. 2013. | |
Tahlan S, Kumar S, Kakkar S and Narasimhan B: Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem. 13:662019. View Article : Google Scholar : PubMed/NCBI | |
Herd RP, Miller TB and Gabel AA: A field evaluation of pro-benzimidazole, benzimidazole, and non-benzimidazole anthelmintics in horses. J Am Vet Med Assoc. 179:686–691. 1981.PubMed/NCBI | |
Bansal Y, Kaur M and Bansal G: Antimicrobial potential of benzimidazole derived molecules. Mini Rev Med Chem. 19:624–646. 2019. View Article : Google Scholar | |
Králová V, Hanušová V, Staňková P, Knoppová K, Čáňová K and Skálová L: Antiproliferative effect of benzimidazole anthelmin-tics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anticancer Drugs. 24:911–919. 2013. View Article : Google Scholar | |
Dayan AD: Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 86:141–159. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pourgholami MH, Woon L, Almajd R, Akhter J, Bowery P and Morris DL: In vitro and in vivo suppression of growth of hepato-cellular carcinoma cells by albendazole. Cancer Lett. 165:43–49. 2001. View Article : Google Scholar : PubMed/NCBI | |
Khalilzadeh A, Wangoo KT, Morris DL and Pourgholami MH: Epothilone-paclitaxel resistant leukemic cells CEM/dEpoB300 are sensitive to albendazole: Involvement of apoptotic pathways. Biochem Pharmacol. 74:407–414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chu SW, Badar S, Morris DL and Pourgholami MH: Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 29:3791–3796. 2009.PubMed/NCBI | |
Teruel M, Dercole J and Catalano R: Evaluation of potential embryo toxicity of albendazole sulphoxide in CF1 mice. Biocell. 35:29–33. 2011.PubMed/NCBI | |
Pourgholami MH, Yan Cai Z, Lu Y, Wang L and Morris DL: Albendazole: A potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin Cancer Res. 12:1928–1935. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wagil M, Bialk-Bielinska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P and Stolte S: Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res Int. 22:2566–2573. 2015. View Article : Google Scholar : | |
Canova K, Rozkydalova L and Rudolf E: Anthelmintic flubendazole and its potential use in anticancer therapy. Acta Medica (Hradec Kralove). 60:5–11. 2017. View Article : Google Scholar | |
Hou ZJ, Luo X, Zhang W, Peng F, Cui B, Wu SJ, Zheng FM, Xu J, Xu LZ, Long ZJ, et al: Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 6:6326–6340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spagnuolo PA, Hu J, Hurren R, Wang X, Gronda M, Sukhai MA, Di Meo A, Boss J, Ashali I, Beheshti Zavareh R, et al: The anti-helmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood. 115:4824–4833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Michaelis M, Agha B, Rothweiler F, Löschmann N, Voges Y, Mittelbronn M, Starzetz T, Harter PN, Abhari BA, Fulda S, et al: Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci Rep. 5:82022015. View Article : Google Scholar : PubMed/NCBI | |
Canova K, Rozkydalova L, Vokurkova D and Rudolf E: Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol In Vitro. 46:313–322. 2018. View Article : Google Scholar | |
Bai RY, Staedtke V, Aprhys CM, Gallia GL and Riggins GJ: Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 13:974–982. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay T, Sasaki J, Ramesh R and Roth JA: Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res. 8:2963–2969. 2002.PubMed/NCBI | |
Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA and Mukhopadhyay T: The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther. 1:1201–1209. 2002.PubMed/NCBI | |
Nygren P, Fryknas M, Agerup B and Larsson R: Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol. 139:2133–2140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Doudican NA, Byron SA, Pollock PM and Orlow SJ: XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts. Anticancer Drugs. 24:181–188. 2013. View Article : Google Scholar | |
De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R and Symons M: Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol Med. 23:50–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin UH, Kim SB and Safe S: Omeprazole inhibits pancreatic cancer cell invasion through a nongenomic aryl hydrocarbon receptor pathway. Chem Res Toxicol. 28:907–918. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang JL, Liu M, Yang Q, Lin SY, Shan HB, Wang HY and Xu GL: Effects of omeprazole in improving concurrent chemo-radiotherapy efficacy in rectal cancer. World J Gastroenterol. 23:2575–2584. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fako VE, Wu X, Pflug B, Liu JY and Zhang JT: Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J Med Chem. 58:778–784. 2015. View Article : Google Scholar : | |
Haladyj E, Sikora M, Felis-Giemza A and Olesinska M: Antimalarialsare they effective and safe in rheumatic diseases? Reumatologia. 56:164–173. 2018. View Article : Google Scholar | |
Wallace DJJUU: Waltham: Antimalarial drugs in the treatment of rheumatic disease. 2014. | |
Bondeson J and Sundler R: Antimalarial drugs inhibit phospholipase A2 activation and induction of interleukin 1beta and tumor necrosis factor alpha in macrophages: Implications for their mode of action in rheumatoid arthritis. Gen Pharmacol. 30:357–366. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chou AC and Fitch CD: Heme polymerase: Modulation by chloroquine treatment of a rodent malaria. Life Sci. 51:2073–2078. 1992. View Article : Google Scholar : PubMed/NCBI | |
Untaroiu AM, Carey MA, Guler JL and Papin JA: Leveraging the effects of chloroquine on resistant malaria parasites for combination therapies. BMC Bioinformatics. 20:1862019. View Article : Google Scholar : PubMed/NCBI | |
Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, Agostinis P and Bouche G: Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 11:7812017. View Article : Google Scholar : PubMed/NCBI | |
Mulcahy Levy JM, Zahedi S, Griesinger AM, Morin A, Davies KD, Aisner DL, Kleinschmidt-DeMasters BK, Fitzwalter BE, Goodall ML, Thorburn J, et al: Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife. 6:pii: e19671. 2017. View Article : Google Scholar : PubMed/NCBI | |
Egawa Y, Saigo C, Kito Y, Moriki T and Takeuchi T: Therapeutic potential of CPI-613 for targeting tumorous mitochondrial energy metabolism and inhibiting autophagy in clear cell sarcoma. PLoS One. 13:e01989402018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Han C, Yu H, Zhu W, Cui H, Zheng L, Zhang C and Yue L: Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondri-almediated apoptosis. Oncol Rep. 39:2807–2816. 2018.PubMed/NCBI | |
Ho M, Patel A, Hanley C, Murphy A, McSweeney T, Zhang L, McCann A, O'Gorman P and Bianchi G: Exploiting autophagy in multiple myeloma. J Cancer Metastasis Treat. 5:702019. | |
King MA, Ganley IG and Flemington V: Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene. 35:4518–4528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weyerhauser P, Kantelhardt SR and Kim EL: Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front Oncol. 8:3352018. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Yip ML, Shen X, Li H, Hsin LY, Labarge S, Heinrich EL, Lee W, Lu J and Vaidehi N: Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One. 7:e310042012. View Article : Google Scholar : PubMed/NCBI | |
Mereddy G and Ronayne CJ: Repurposing antimalarial drug mefloquine for cancer Treatment. Transl Med (Sunnyvale). 8:992018. View Article : Google Scholar | |
Ahmed U, Jones H and Adams CE: Chlorpromazine for psychosis-induced aggression or agitation. Schizophr Bull. 37:890–891. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heinrich JC, Donakonda S, Haupt VJ, Lennig P, Zhang Y and Schroeder M: New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells. Oncotarget. 7:68156–68169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gil-Ad I, Shtaif B, Levkovitz Y, Dayag M, Zeldich E and Weizman A: Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors. J Mol Neurosci. 22:189–198. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shin SY, Kim CG, Kim SH, Kim YS, Lim Y and Lee YH: Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp Mol Med. 42:395–405. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cuomo F, Altucci L and Cobellis G: Autophagy function and dysfunction: Potential drugs as Anti-cancer therapy. Cancers (Basel). 11:pii: E1465. 2019. View Article : Google Scholar | |
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y and Lee YH: The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis. 34:2080–2089. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC and Van Meir EG: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 9:469–479. 1999. View Article : Google Scholar : PubMed/NCBI | |
Michalak K, Wesolowska O, Motohashi N, Molnar J and Hendrich AB: Interactions of phenothiazines with lipid bilayer and their role in multidrug resistance reversal. Curr Drug Targets. 7:1095–1105. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhelev Z, Ohba H, Bakalova R, Hadjimitova V, Ishikawa M, Shinohara Y and Baba Y: Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol. 53:267–275. 2004. View Article : Google Scholar | |
Yde CW, Clausen MP, Bennetzen MV, Lykkesfeldt AE, Mouritsen OG and Guerra B: The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anticancer Drugs. 20:723–735. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee WY, Lee WT, Cheng CH, Chen KC, Chou CM, Chung CH, Sun MS, Cheng HW, Ho MN and Lin CW: Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget. 6:27580–27595. 2015.PubMed/NCBI | |
Chen MH, Yang WL, Lin KT, Liu CH, Liu YW, Huang KW, Chang PM, Lai JM, Hsu CN, Chao KM, et al: Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS One. 6:e271862011. View Article : Google Scholar : PubMed/NCBI | |
Lee MS, Johansen L, Zhang Y, Wilson A, Keegan M, Avery W, Elliott P, Borisy AA and Keith CT: The novel combination of chlorpromazine and pentamidine exerts synergistic antipro-liferative effects through dual mitotic action. Cancer Res. 67:11359–11367. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cottingham C, Percival S, Birky T and Wang Q: Tricyclic antidepressants exhibit variable pharmacological profiles at the alpha(2A) adrenergic receptor. Biochem Biophys Res Commun. 451:461–466. 2014. View Article : Google Scholar : PubMed/NCBI | |
Benkelfat C, Murphy DL, Zohar J, Hill JL, Grover G and Insel TR: Clomipramine in obsessive-compulsive disorder. Further evidence for a serotonergic mechanism of action. Arch Gen Psychiatry. 46:23–28. 1989. View Article : Google Scholar : PubMed/NCBI | |
Levkovitz Y, Arnest G, Mendlovic S, Treves I and Fennig S: The effect of Ondansetron on memory in schizophrenic patients. Brain Res Bull. 65:291–295. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rundle-Thiele D, Head R, Cosgrove L and Martin JH: Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br J Clin Pharmacol. 81:199–209. 2016. View Article : Google Scholar | |
Higgins SC and Pilkington GJ: The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 30:391–397. 2010.PubMed/NCBI | |
Tzadok S, Beery E, Israeli M, Uziel O, Lahav M, Fenig E, Gil-Ad I, Weizman A and Nordenberg J: In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Int J Oncol. 37:1043–1051. 2010.PubMed/NCBI | |
Xia Z, Bergstrand A, DePierre JW and Nässberger L: The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J Biochem Mol Toxicol. 13:338–347. 1999. View Article : Google Scholar : PubMed/NCBI | |
Daley E, Wilkie D, Loesch A, Hargreaves IP, Kendall DA, Pilkington GJ and Bates TE: Chlorimipramine: A novel anticancer agent with a mitochondrial target. Biochem Biophys Res Commun. 328:623–632. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bilir A, Erguven M, Oktem G, Ozdemir A, Uslu A, Aktas E and Bonavida B: Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol. 32:829–839. 2008.PubMed/NCBI | |
Merry S, Hamilton TG, Flanigan P, Freshney RI and Kaye SB: Circumvention of pleiotropic drug resistance in subcutaneous tumours in vivo with verapamil and clomipramine. Eur J Cancer. 27:31–34. 1991. View Article : Google Scholar : PubMed/NCBI | |
Lu HA: Diabetes Insipidus. Adv Exp Med Biol. 969:213–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agerso H, Seiding Larsen L, Riis A, Lövgren U, Karlsson MO and Senderovitz T: Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 58:352–358. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deen PM, van Balkom BW and Kamsteeg EJ: Routing of the aquaporin-2 water channel in health and disease. Eur J Cell Biol. 79:523–530. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hamilton KL and Devor DC: Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol. 302:F1069–F1081. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mannucci PM: Desmopressin (DDAVP) in the treatment of bleeding disorders: The first 20 years. Blood. 90:2515–2521. 1997. View Article : Google Scholar : PubMed/NCBI | |
Andersson KE and Van Kerrebroeck P: Pharmacotherapy for Nocturia. Curr Urol Rep. 19:82018. View Article : Google Scholar : PubMed/NCBI | |
North WG: Gene regulation of vasopressin and vasopressin receptors in cancer. Exp Physiol. 85(Spec No: 27S-40S)2000. View Article : Google Scholar : PubMed/NCBI | |
Alonso DF, Skilton G, Farias EF, Bal de Kier Joffe E and Gomez DE: Antimetastatic effect of desmopressin in a mouse mammary tumor model. Breast Cancer Res Treat. 57:271–275. 1999. View Article : Google Scholar | |
Giron S, Tejera AM, Ripoll GV, Gomez DE and Alonso DF: Desmopressin inhibits lung and lymph node metastasis in a mouse mammary carcinoma model of surgical manipulation. J Surg Oncol. 81:38–44. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ripoll GV, Garona J, Hermo GA, Gomez DE and Alonso DF: Effects of the synthetic vasopressin analog desmopressin in a mouse model of colon cancer. Anticancer Res. 30:5049–5054. 2010.PubMed/NCBI | |
Ripoll GV, Farina HG, Yoshiji H, Gomez DE and Alonso DF: Desmopressin reduces melanoma lung metastasis in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo. 20:881–885. 2006. | |
Hermo GA, Torres P, Ripoll GV, Scursoni AM, Gomez DE, Alonso DF and Gobello C: Perioperative desmopressin prolongs survival in surgically treated bitches with mammary gland tumours: A pilot study. Vet J. 178:103–108. 2008. View Article : Google Scholar | |
Ripoll GV, Garona J, Pifano M, Farina HG, Gomez DE and Alonso DF: Reduction of tumor angiogenesis induced by desmopressin in a breast cancer model. Breast Cancer Res Treat. 142:9–18. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garona J, Pifano M, Orlando UD, Pastrian MB, Iannucci NB, Ortega HH, Podesta EJ, Gomez DE, Ripoll GV and Alonso DF: The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models. Int J Oncol. 46:2335–2345. 2015. View Article : Google Scholar : | |
Weinberg RS, Grecco MO, Ferro GS, Seigelshifer DJ, Perroni NV, Terrier FJ, Sánchez-Luceros A, Maronna E, Sánchez-Marull R, Frahm I, et al: A phase II dose-escalation trial of perioperative desmopressin (1-desamino-8-d-arginine vasopressin) in breast cancer patients. Springerplus. 4:4282015. View Article : Google Scholar : PubMed/NCBI | |
Sasaki H, Klotz LH, Sugar LM, Kiss A and Venkateswaran V: A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells. Biochem Biophys Res Commun. 464:848–854. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bass R, Roberto D, Wang DZ, Cantu FP, Mohamadi RM, Kelley SO, Klotz L and Venkateswaran V: Combining desmopressin and docetaxel for the treatment of castration-resistant prostate cancer in an orthotopic model. Anticancer Res. 39:113–118. 2019. View Article : Google Scholar | |
Rose A, Andre N, Rozados VR, Mainetti LE, Menacho Márquez M, Rico MJ, Schaiquevich P, Villarroel M, Gregianin L, Graupera JM, et al: Highlights from the 1st Latin American meeting on metronomic chemotherapy and drug repositioning in oncology, 27-28 May, 2016Rosario, Argentina. Ecancermedicalscience. 10:6722016. View Article : Google Scholar | |
Hollman A: Drugs for atrial fibrillation. Digoxin comes from Digitalis lanata. BMJ. 312:9121996. View Article : Google Scholar : PubMed/NCBI | |
Ravi Kumar A and Kurup PA: Digoxin and membrane sodium potassium ATPase inhibition in cardiovascular disease. Indian Heart J. 52:315–318. 2000.PubMed/NCBI | |
Sperelakis N and Ohya Y: Electrophysiology of vascular smooth muscle. Physiology and Pathophysiology of the Heart. Springer; pp. 773–811. 1989, View Article : Google Scholar | |
Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G and Galluzzi L: Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology. 2:e230822013. View Article : Google Scholar : PubMed/NCBI | |
Biggar RJ, Wohlfahrt J, Oudin A, Hjuler T and Melbye M: Digoxin use and the risk of breast cancer in women. J Clin Oncol. 29:2165–2170. 2011. View Article : Google Scholar : PubMed/NCBI | |
Platz EA, Yegnasubramanian S, Liu JO, Chong CR, Shim JS, Kenfield SA, Stampfer MJ, Willett WC, Giovannucci E and Nelson WG: A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 1:68–77. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Zhan T, Duffy D, Hoffman-Censits J, Kilpatrick D, Trabulsi EJ, Lallas CD, Chervoneva I, Limentani K, Kennedy B, et al: A pilot phase II Study of digoxin in patients with recurrent prostate cancer as evident by a rising PSA. Am J Cancer Ther Pharmacol. 2:21–32. 2014. | |
Biggar RJ: Molecular pathways: Digoxin use and estrogen-sensitive cancers-risks and possible therapeutic implications. Clin Cancer Res. 18:2133–2137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R, et al: Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA. 105:19579–19586. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kometiani P, Liu L and Askari A: Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol. 67:929–936. 2005. View Article : Google Scholar | |
Frankel AE, Eskiocak U, Gill JG, Yuan S, Ramesh V, Froehlich TW, Ahn C and Morrison SJ: Digoxin plus trametinib therapy achieves disease control in BRAF Wild-type metastatic melanoma patients. Neoplasia. 19:255–260. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia M, Huang R, Sakamuru S, Alcorta D, Cho MH, Lee DH, Park DM, Kelley MJ, Sommer J and Austin CP: Identification of repurposed small molecule drugs for chordoma therapy. Cancer Biol Ther. 14:638–647. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heldal AT, Skurtveit S, Lobmaier PPK, Vederhus JK and Bramness JG: Use of drugs for alcohol use disorder in Norway 2004-16. Tidsskr Nor Laegeforen. 138:2018. View Article : Google Scholar | |
Huang J, Campian JL, Gujar AD, Tran DD, Lockhart AC, DeWees TA, Tsien CI and Kim AH: A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J Neurooncol. 128:259–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Hannafon BN and Ding WQ: Disulfiram's anticancer activity: Evidence and mechanisms. Anticancer Agents Med Chem. 16:1378–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Wang Z, Brown S, Kannappan V, Tawari PE, Jiang W, Irache JM, Tang JZ, Armesilla AL, Darling JL, et al: Liposome encapsulated Disulfiram inhibits NFkB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget. 5:7471–7485. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kona FR, Buac D and M Burger A: Disulfiram, and disulfiram derivatives as novel potential anticancer drugs targeting the ubiquitin-proteasome system in both preclinical and clinical studies. Curr Cancer Drug Targets. 11:338–346. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuo CF, Luo SF, See LC, Chou IJ, Fang YF and Yu KH: Increased risk of cancer among gout patients: A nationwide population study. Joint Bone Spine. 79:375–378. 2012. View Article : Google Scholar | |
Triscott J, Lee C, Hu K, Fotovati A, Berns R, Pambid M, Luk M, Kast RE, Kong E, Toyota E, et al: Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblas-toma and over-rides resistance to temozolomide. Oncotarget. 3:1112–1123. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cvek B: TNF-alpha could be responsible for disulfiram-mediated hepatotoxicity. J Hepatol. 49:865–866. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ekinci E, Rohondia S, Khan R and Dou QP: Repurposing disulfiram as an Anti-cancer agent: Updated review on literature and patents. Recent Pat Anticancer Drug Discov. 14:113–132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schott B, Londos-Gagliardi D, Ries C, Huet S and Robert J: Pharmacological and molecular characterization of intrinsic and acquired doxorubicin resistance in murine tumor cell lines. J Cancer Res Clin Oncol. 119:527–532. 1993. View Article : Google Scholar : PubMed/NCBI | |
Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, et al: Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 552:194–199. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cong J, Wang Y, Zhang X, Zhang N, Liu L, Soukup K, Michelakos T, Hong T, DeLeo A, Cai L, et al: A novel chemo-radiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Lett. 409:9–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Triscott J, Rose Pambid M and Dunn SE: Concise review: Bullseye: Targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells. 33:1042–1046. 2015. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Stewart DJ, Maroun JA and Nair RC: A randomized phase II study of cisplatin alone versus cisplatin plus disulfiram. Am J Clin Oncol. 13:119–124. 1990. View Article : Google Scholar : PubMed/NCBI | |
Schweizer MT, Lin J, Blackford A, Bardia A, King S, Armstrong AJ, Rudek MA, Yegnasubramanian S and Carducci MA: Pharmacodynamic study of disulfiram in men with non-metastatic recurrent prostate cancer. Prostate Cancer Prostatic Dis. 16:357–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peyriere H, Makinson A, Marchandin H and Reynes J: Doxycycline in the management of sexually transmitted infections. J Antimicrobial Chemother. 73:553–563. 2018. | |
Polikanov YS, Aleksashin NA, Beckert B and Wilson DN: The mechanisms of action of ribosome-targeting peptide antibiotics. Front Mol Biosci. 5:482018. View Article : Google Scholar : PubMed/NCBI | |
Gilbertson-Beadling S, Powers EA, Stamp-Cole M, Scott PS, Wallace TL, Copeland J, Petzold G, Mitchell M, Ledbetter S and Poorman R: The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metal-loproteinase-dependent mechanism. Cancer Chemother Pharmacol. 36:418–424. 1995. View Article : Google Scholar | |
Yamazaki M, Akahane T, Buck T, Yoshiji H, Gomez DE, Schoeffner DJ, Okajima E, Harris SR, Bunce OR, Thorgeirsson SS and Thorgeirsson UP: Long-term exposure to elevated levels of circulating TIMP-1 but not mammary TIMP-1 suppresses growth of mammary carcinomas in transgenic mice. Carcinogenesis. 25:1735–1746. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gomez DE, Yoshiji H, Kim JC and Thorgeirsson UP: Ulex euro-paeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells. Biochem Biophys Res Commun. 216:177–182. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget. 6:4569–4584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scatena C, Roncella M, Di Paolo A, Aretini P, Menicagli M, Fanelli G, Marini C, Mazzanti CM, Ghilli M, Sotgia F, et al: Doxycycline, an inhibitor of mitochondrial biogenesis, effectively reduces cancer stem cells (CSCs) in early breast cancer patients: A clinical pilot study. Front Oncol. 8:4522018. View Article : Google Scholar : PubMed/NCBI | |
Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, Spence S, Balakrishnan V, Jordan C, Poligone B, et al: Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 6:14796–14813. 2015. View Article : Google Scholar : PubMed/NCBI | |
Son K, Fujioka S, Iida T, Furukawa K, Fujita T, Yamada H, Chiao PJ and Yanaga K: Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells. Anticancer Res. 29:3995–4003. 2009.PubMed/NCBI | |
Duivenvoorden WC, Popović SV, Lhoták S, Seidlitz E, Hirte HW, Tozer RG and Singh G: Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res. 62:1588–1591. 2002.PubMed/NCBI | |
Wan L, Dong H, Xu H, Ma J, Zhu Y, Lu Y, Wang J, Zhang T, Li T, Xie J, et al: Aspirin, lysine, mifepristone and doxycycline combined can effectively and safely prevent and treat cancer metastasis: Prevent seeds from gemmating on soil. Oncotarget. 6:35157–35172. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Zhang Q, Lee S, Zhong WL, Liu YR, Liu HJ, Zhao D, Chen S, Xiao T, Meng J, et al: Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget. 6:40667–40679. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis AJ, Chen BP and Chen DJ: DNA-PK: A dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst). 17:21–29. 2014. View Article : Google Scholar | |
Lamb R, Fiorillo M, Chadwick A, Ozsvari B, Reeves KJ, Smith DL, Clarke RB, Howell SJ, Cappello AR, Martinez-Outschoorn UE, et al: Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget. 6:14005–14025. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimomura A, Takasaki A, Nomura R, Hayashi N and Senda T: Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1. Med Mol Morphol. 46:14–19. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alexander-Savino CV, Hayden MS, Richardson C, Zhao J and Poligone B: Doxycycline is an NF-kB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 7:75954–75967. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu N, Wang Q, Jiang S, Wang Q, Hu W, Zhou S, Zhao L, Xie L, Chen J, Wellstein A and Lai EY: Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biol. 20:87–97. 2019. View Article : Google Scholar | |
Li T, Zhang Q, Zhang J, Yang G, Shao Z, Luo J, Fan M, Ni C, Wu Z and Hu X: Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-kB pathway. BMC Cancer. 14:962014. View Article : Google Scholar | |
Shigeto T, Yokoyama Y, Xin B and Mizunuma H: Peroxisome proliferator-activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep. 18:833–840. 2007.PubMed/NCBI | |
Liu H, Zang C, Fenner MH, Liu D, Possinger K, Koeffler HP and Elstner E: Growth inhibition and apoptosis in human Philadelphia chromosome-positive lymphoblastic leukemia cell lines by treatment with the dual PPARalpha/gamma ligand TZD18. Blood. 107:3683–3692. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR and Gius D: Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest. 128:3682–3691. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jan CI, Tsai MH, Chiu CF, Huang YP, Liu CJ and Chang NW: Fenofibrate suppresses oral tumorigenesis via reprogramming metabolic processes: Potential drug repurposing for oral cancer. Int J Biol Sci. 12:786–798. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Li Y, Yuan F and Zuo J: Hexokinase II promotes the Warburg effect by phosphorylating alpha subunit of pyruvate dehydrogenase. Chin J Cancer Res. 31:521–532. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feron O: Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pedersen PL: Voltage dependent anion channels (VDACs): A brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the 'Warburg effect' in cancer. J Bioenerg Biomembr. 40:123–126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nielsen MH, Pedersen FS and Kjems J: Molecular strategies to inhibit HIV-1 replication. Retrovirology. 2:102005. View Article : Google Scholar : PubMed/NCBI | |
Jensen K, Bikas A, Patel A, Kushchayeva Y, Costello J, McDaniel D, Burman K and Vasko V: Nelfinavir inhibits proliferation and induces DNA damage in thyroid cancer cells. Endocr Relat Cancer. 24:147–156. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wilson JM, Fokas E, Dutton SJ, Patel N, Hawkins MA, Eccles C, Chu KY, Durrant L, Abraham AG, Partridge M, et al: ARCII: A phase II trial of the HIV protease inhibitor Nelfinavir in combination with chemoradiation for locally advanced inoperable pancreatic cancer. Radiother Oncol. 119:306–311. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hoover AC, Milhem MM, Anderson CM, Sun W, Smith BJ, Hoffman HT and Buatti JM: Efficacy of nelfinavir as mono-therapy in refractory adenoid cystic carcinoma: Results of a phase II clinical trial. Head Neck. 37:722–726. 2015. View Article : Google Scholar | |
Goda JS, Pachpor T, Basu T, Chopra S and Gota V: Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers. Indian J Med Res. 143:145–159. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Mikochik PJ, Ra JH, Lei H, Flaherty KT, Winkler JD and Spitz FR: HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest. Cancer Res. 67:1221–1227. 2007. View Article : Google Scholar : PubMed/NCBI | |
Srirangam A, Mitra R, Wang M, Gorski JC, Badve S, Baldridge L, Hamilton J, Kishimoto H, Hawes J, Li L, et al: Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clin Cancer Res. 12:1883–1896. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mahoney E, Maddocks K, Flynn J, Jones J, Cole SL, Zhang X, Byrd JC and Johnson AJ: Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: A new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies. Leuk Lymphoma. 54:2685–2692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pore N, Gupta AK, Cerniglia GJ and Maity A: HIV protease inhibitors decrease VEGF/HIF-1alpha expression and angiogenesis in glioblastoma cells. Neoplasia. 8:889–895. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hampson L, Kitchener HC and Hampson IN: Specific HIV protease inhibitors inhibit the ability of HPV16 E6 to degrade p53 and selectively kill E6-dependent cervical carcinoma cells in vitro. Antivir Ther. 11:813–825. 2006. | |
Yang Y, Ikezoe T, Nishioka C, Bandobashi K, Takeuchi T, Adachi Y, Kobayashi M, Takeuchi S, Koeffler HP and Taguchi H: NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines. Br J Cancer. 95:1653–1662. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pajonk F, Himmelsbach J, Riess K, Sommer A and McBride WH: The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 62:5230–5235. 2002.PubMed/NCBI | |
Yang Y, Ikezoe T, Takeuchi T, Adachi Y, Ohtsuki Y, Takeuchi S, Koeffler HP and Taguchi H: HIV-1 protease inhibitor induces growth arrest and apoptosis of human prostate cancer LNCaP cells in vitro and in vivo in conjunction with blockade of androgen receptor STAT3 and AKT signaling. Cancer Sci. 96:425–433. 2005. View Article : Google Scholar : PubMed/NCBI | |
Koltai T: Nelfinavir and other protease inhibitors in cancer: Mechanisms involved in anticancer activity. F1000Res. 4:92015. View Article : Google Scholar : PubMed/NCBI | |
Bruning A, Vogel M, Burger P, Rahmeh M, Gingelmaier A, Friese K, Lenhard M and Burges A: Nelfinavir induces TRAIL receptor upregulation in ovarian cancer cells. Biochem Biophys Res Commun. 377:1309–1314. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, Samuleson CG, Su S and Chen TC: Nelfinavir poten-tiation of imatinib cytotoxicity in meningioma cells via survivin inhibition. Neurosurg Focus. 23:E92007. View Article : Google Scholar | |
Xie L, Evangelidis T, Xie L and Bourne PE: Drug discovery using chemical systems biology: Weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol. 7:e10020372011. View Article : Google Scholar : PubMed/NCBI | |
Lenhard JM, Croom DK, Weiel JE and Winegar DA: HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler Thromb Vasc Biol. 20:2625–2629. 2000. View Article : Google Scholar : PubMed/NCBI | |
McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST and Shanmugam M: Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed therapy. Blood. 119:4686–4697. 2012. View Article : Google Scholar : PubMed/NCBI | |
Laurent N, de Bouard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V and Peschanski M: Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo. Mol Cancer Ther. 3:129–136. 2004.PubMed/NCBI | |
Kast RE: The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir. Chin J Cancer. 34:161–165. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ikezoe T, Saito T, Bandobashi K, Yang Y, Koeffler HP and Taguchi H: HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Mol Cancer Ther. 3:473–479. 2004.PubMed/NCBI | |
Kast RE, Karpel-Massler G and Halatsch ME: CUSP9* treatment protocol for recurrent glioblastoma: Aprepitant, arte-sunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget. 5:8052–8082. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mendez-Lopez M, Sutter T, Driessen C and Besse L: HIV protease inhibitors for the treatment of multiple myeloma. Clin Adv Hematol Oncol. 17:615–623. 2019.PubMed/NCBI | |
Ondieki G, Nyagblordzro M, Kikete S, Liang R, Wang L and He X: Cytochrome P450 and P-Glycoprotein-mediated interactions involving african herbs indicated for common noncommunicable diseases. Evid Based Complement Alternat Med. 2017:25824632017. View Article : Google Scholar : PubMed/NCBI | |
Perrotti D, Jamieson C, Goldman J and Skorski T: Chronic myeloid leukemia: Mechanisms of blastic transformation. J Clin Invest. 120:2254–2264. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jabbour E, Parikh SA, Kantarjian H and Cortes J: Chronic myeloid leukemia: Mechanisms of resistance and treatment. Hematol Oncol Clin North Am. 25:981–995. v2011. View Article : Google Scholar : PubMed/NCBI | |
Bixby D and Talpaz M: Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am Soc Hematol Educ Program:. 461–476. 2009. View Article : Google Scholar | |
Xu HL, Wang ZJ, Liang XM, Li X, Shi Z, Zhou N and Bao JK: In silico identification of novel kinase inhibitors targeting wild-type and T315I mutant ABL1 from FDA-approved drugs. Mol Biosyst. 10:1524–1537. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ahluwalia MS, Patton C, Stevens G, Tekautz T, Angelov L, Vogelbaum MA, Weil RJ, Chao S, Elson P, Suh JH, et al: Phase II trial of ritonavir/lopinavir in patients with progressive or recurrent high-grade gliomas. J Neurooncol. 102:317–321. 2011. View Article : Google Scholar | |
Rathbun RC and Liedtke MD: Antiretroviral drug interactions: Overview of interactions involving new and investigational agents and the role of therapeutic drug monitoring for management. Pharmaceutics. 3:745–781. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kast RE: Ritonavir and disulfiram may be synergistic in lowering active interleukin-18 levels in acute pancreatitis, and thereby hasten recovery. JOP. 9:350–353. 2008.PubMed/NCBI | |
Piliero PJ: Interaction between ritonavir and statins. Am J Med. 112:510–511. 2002. View Article : Google Scholar : PubMed/NCBI | |
Maertens JA: History of the development of azole derivatives. Clin Microbiol Infect. 10(Suppl 1): S1–S10. 2004. View Article : Google Scholar | |
Vanden Bossche H, Marichal P, Le Jeune L, Coene MC, Gorrens J and Cools W: Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother. 37:2101–2105. 1993. View Article : Google Scholar : PubMed/NCBI | |
Chong CR, Xu J, Lu J, Bhat S, Sullivan DJ Jr and Liu JO: Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol. 2:263–270. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nacev BA, Grassi P, Dell A, Haslam SM and Liu JO: The anti-fungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J Biol Chem. 286:44045–44056. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aftab BT, Dobromilskaya I, Liu JO and Rudin CM: Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71:6764–6772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Dang Y, Ren YR and Liu JO: Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci USA. 107:4764–4769. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D, et al: Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 17:388–399. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K, Lei Y, Yuan K, Li Y, Lan J, et al: Itraconazole suppresses the growth of glioblastoma through induction of autophagy: Involvement of abnormal cholesterol trafficking. Autophagy. 10:1241–1255. 2014. View Article : Google Scholar : PubMed/NCBI | |
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N and Nguyen DM: Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg. 147:508–516. 2014. View Article : Google Scholar | |
Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T and Okumura K: Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 22:1355–1359. 1999. View Article : Google Scholar | |
Antonarakis ES, Heath EI, Smith DC, Rathkopf D, Blackford AL, Danila DC, King S, Frost A, Ajiboye AS, Zhao M, et al: Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist. 18:163–173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Brahmer JR, Juergens RA, Hann CL, Ettinger DS, Sebree R, Smith R, Aftab BT, Huang P and Liu JO: Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J Thorac Oncol. 8:619–623. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pounds R, Leonard S, Dawson C and Kehoe S: Repurposing itraconazole for the treatment of cancer. Oncol Lett. 14:2587–2597. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ademuyiwa F, Zhao Q, Perkins S, Gebregziabher N, Jones DR, Sledge LGVW and Miller K: A pilot trial of itraconazole phar-macokinetics in patients with metastatic breast cancer. J Clin Oncol. 29:e135652011. View Article : Google Scholar | |
Tsubamoto H, Sonoda T, Yamasaki M and Inoue K: Impact of combination chemotherapy with itraconazole on survival for patients with recurrent or persistent ovarian clear cell carcinoma. Anticancer Res. 34:2007–2014. 2014.PubMed/NCBI | |
Ringshausen I, Feuerstacke Y, Krainz P, den Hollander J, Hermann K, Buck A, Peschel C and Meyer Zum Bueschenfelde C: Antifungal therapy with itraconazole impairs the anti-lymphoma effects of rituximab by inhibiting recruitment of CD20 to cell surface lipid rafts. Cancer Res. 70:4292–4296. 2010. View Article : Google Scholar : PubMed/NCBI | |
Juarez M, Schcolnik-Cabrera A and Dueñas-Gonzalez A: The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 8:317–331. 2018.PubMed/NCBI | |
Papich MG: Saunders handbook of veterinary drugs. Elsevier; 2007 | |
Triggle DJ and Taylor JB: Comprehensive Medicinal Chemistry II. Elsevier. 2006. | |
Intuyod K, Hahnvajanawong C, Pinlaor P and Pinlaor S: Anti-parasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res. 39:4837–4843. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Wang P, Sun YJ and Wu YJ: Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res. 38:2652019. View Article : Google Scholar | |
Sun D, Li X, He Y, Li W, Wang Y, Wang H, Jiang S and Xin Y: YAP1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo. Oncotarget. 7:81062–81076. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Banno K, Kunitomi H, Tominaga E and Aoki D: Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol. 30:e102019. View Article : Google Scholar | |
Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M, Hanash SM, Yoshihara K, Wei Z, Tien JC, Rangel R, et al: In vivo loss-of-function screens identify KPNB1 as a new drug-gable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci USA. 114:E7301–E7310. 2017. View Article : Google Scholar | |
Melotti A, Mas C, Kuciak M, Lorente-Trigos A and Borges I: The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med. 6:1263–1278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, Gil V, Christova R, Bansal N, Yang S, et al: Selective Inhibition of SIN3 Corepressor with Avermectins as a novel therapeutic strategy in Triple-Negative breast cancer. Mol Cancer Ther. 14:1824–1836. 2015. View Article : Google Scholar : PubMed/NCBI | |
Breedveld FC and Dayer JM: Leflunomide: Mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis. 59:841–849. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schiff MH, Strand V, Oed C and Loew-Friedrich I: Leflunomide: Efficacy and safety in clinical trials for the treatment of rheumatoid arthritis. Drugs Today (Barc). 36:383–394. 2000. View Article : Google Scholar | |
Baumann P, Mandl-Weber S, Völkl A, Adam C, Bumeder I, Oduncu F and Schmidmaier R: Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol Cancer Ther. 8:366–375. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hail N Jr, Chen P and Bushman LR: Teriflunomide (lefluno-mide) promotes cytostatic, antioxidant, and apoptotic effects in transformed prostate epithelial cells: Evidence supporting a role for teriflunomide in prostate cancer chemoprevention. Neoplasia. 12:464–475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cook MR, Pinchot SN, Jaskula-Sztul R, Luo J, Kunnimalaiyaan M and Chen H: Identification of a novel Raf-1 pathway activator that inhibits gastrointestinal carcinoid cell growth. Mol Cancer Ther. 9:429–437. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Yan X, Xiang Z, Ding HF and Cui H: Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells in vitro and in vivo. PLoS One. 8:e715552013. View Article : Google Scholar : PubMed/NCBI | |
Hanson K, Robinson SD, Al-Yousuf K, Hendry AE, Sexton DW, Sherwood V and Wheeler GN: Correction: The anti-rheumatic drug, leflunomide, synergizes with MEK inhibition to suppress melanoma growth. Oncotarget. 9:366452018.PubMed/NCBI | |
Gupta R, Bhatia J and Gupta SK: Risk of hepatotoxicity with add-on leflunomide in rheumatoid arthritis patients. Arzneimittelforschung. 61:312–316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chu M and Zhang C: Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer. Sci Rep. 8:15392018. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Chu M: Leflunomide: A promising drug with good antitumor potential. Biochem Biophys Res Commun. 496:726–730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Belli H, Ural C and Akbudak M: Borderline personality disorder: Bipolarity, mood stabilizers and atypical antipsychotics in treatment. J Clin Med Res. 4:301–308. 2012.PubMed/NCBI | |
Taylor C, Fricker AD, Devi LA and Gomes I: Mechanisms of action of antidepressants: From neurotransmitter systems to signaling pathways. Cell Signal. 17:549–557. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lenox RH and Hahn CG: Overview of the mechanism of action of lithium in the brain: Fifty-year update. J Clin Psychiatry. 61(Suppl 9): S5–S15. 2000. | |
Muneer A: Wnt and GSK3 signaling pathways in bipolar disorder: Clinical and therapeutic implications. Clin Psychopharmacol Neurosci. 15:100–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Thrasher JB and Terranova P: Glycogen synthase kinase-3: A potential preventive target for prostate cancer management. Urol Oncol. 33:456–463. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rashid MS, Mazur T, Ji W, Liu ST and Taylor WR: Analysis of the role of GSK3 in the mitotic checkpoint. Sci Rep. 8:142592018. View Article : Google Scholar : PubMed/NCBI | |
Kamarudin MNA and Parhar I: Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehensive review. Oncotarget. 10:3952–3977. 2019.PubMed/NCBI | |
Nowicki MO, Dmitrieva N, Stein AM, Cutter JL, Godlewski J, Saeki Y, Nita M, Berens ME, Sander LM, Newton HB, et al: Lithium inhibits invasion of glioma cells; Possible involvement of glycogen synthase kinase-3. Neuro Oncol. 10:690–699. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB and Li B: Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 67:976–988. 2007. View Article : Google Scholar : PubMed/NCBI | |
Azimian-Zavareh V, Hossein G and Janzamin E: Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J Pharmacol. 44:714–721. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maeng YS, Lee R, Lee B, Choi SI and Kim EK: Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci Rep. 6:207392016. View Article : Google Scholar : PubMed/NCBI | |
Pottegård A, Hallas J, Jensen BL, Madsen K and Friis S: Long-term lithium use and risk of renal and upper urinary tract cancers. J Am Soc Nephrol. 27:249–255. 2016. View Article : Google Scholar : | |
Pottegård A, Ennis ZN, Hallas J, Jensen BL, Madsen K and Friis S: Long-term use of lithium and risk of colorectal adeno-carcinoma: A nationwide case-control study. Br J Cancer. 114:571–575. 2016. View Article : Google Scholar | |
Elmaci I and Altinoz MA: A Metabolic inhibitory cocktail for grave cancers: Metformin, pioglitazone and lithium combination in treatment of pancreatic cancer and glioblastoma multiforme. Biochem Genet. 54:573–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taylor OG, Brzozowski JS and Skelding KA: Glioblastoma multiforme: An overview of emerging therapeutic targets. Front Oncol. 9:9632019. View Article : Google Scholar : PubMed/NCBI | |
Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS and Enger PØ: Drug repurposing in cancer. Pharmacol Res. 124:74–91. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bailey CJ: Metformin: Historical overview. Diabetologia. 60:1566–1576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS and Chandel NS: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 3:e022422014. View Article : Google Scholar : PubMed/NCBI | |
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M and Andreelli F: Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond). 122:253–270. 2012. View Article : Google Scholar | |
Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, Viollet B and Guigas B: Metformin activates AMP- activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 54:3101–3110. 2011. View Article : Google Scholar : PubMed/NCBI | |
Negrotto L, Farez MF and Correale J: Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73:520–528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR and Morris AD: Metformin and reduced risk of cancer in diabetic patients. BMJ. 330:1304–1305. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Lee S, Chun KH, Jeon JY, Han SJ, Kim DJ, Kim YS, Woo JT, Nam MS, Baik SH, et al: Metformin reduces the risk of cancer in patients with type 2 diabetes: An analysis based on the Korean National diabetes program cohort. Medicine (Baltimore). 97:e00362018. View Article : Google Scholar | |
Zi F, Zi H, Li Y, He J, Shi Q and Cai Z: Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol Lett. 15:683–690. 2018.PubMed/NCBI | |
Yu H, Zhong X, Gao P, Shi J, Wu Z, Guo Z, Wang Z and Song Y: The potential effect of metformin on cancer: An umbrella review. Front Endocrinol (Lausanne). 10:6172019. View Article : Google Scholar | |
Saraei P, Asadi I, Kakar MA and Moradi-Kor N: The benefi-cial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag Res. 11:3295–3313. 2019. View Article : Google Scholar : | |
Gandini S, Puntoni M, Heckman-Stoddard BM, Dunn BK, Ford L, DeCensi A and Szabo E: Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res (Phila). 7:867–885. 2014. View Article : Google Scholar | |
Suissa S and Azoulay L: Metformin and cancer: Mounting evidence against an association. Diabetes Care. 37:1786–1788. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsilidis KK, Capothanassi D, Allen NE, Rizos EC, Lopez DS, van Veldhoven K, Sacerdote C, Ashby D, Vineis P, Tzoulaki I and Ioannidis JP: Metformin does not affect cancer risk: A cohort study in the U.K. Clinical Practice Research Datalink analyzed like an intention-to-treat trial Diabetes Care. 37:2522–2532. 2014. | |
Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF, Mucci LA, Adami HO and Sørensen HT: Metformin use and prostate cancer risk. Eur Urol. 66:1012–1020. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST and Shanmugam M: Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res. 21:1161–1171. 2015. View Article : Google Scholar | |
Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B and Menendez JA: Metformin: Multi-faceted protection against cancer. Oncotarget. 2:896–917. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pollak MN: Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov. 2:778–790. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pollak M: The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat Rev Cancer. 12:159–169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Foretz M, Guigas B, Bertrand L, Pollak M and Viollet B: Metformin: From mechanisms of action to therapies. Cell Metab. 20:953–966. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moiseeva O, Deschenês-Simard X, Pollak M and Ferbeyre G: Metformin, aging and cancer. Aging (Albany NY). 5:330–331. 2013. View Article : Google Scholar | |
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG and Choi Y: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460:103–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Yang G, Kim Y, Kim J and Ha J: AMPK activators: Mechanisms of action and physiological activities. Exp Mol Med. 48:e2242016. View Article : Google Scholar : PubMed/NCBI | |
Birsoy K, Sabatini DM and Possemato R: Untuning the tumor metabolic machine: Targeting cancer metabolism: A bedside lesson. Nat Med. 18:1022–1023. 2012. View Article : Google Scholar : PubMed/NCBI | |
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B and Thompson CB: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-defi-cient tumor cell growth. Cancer Res. 67:6745–6752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ben Sahra I, Le Marchand-Brustel Y, Tanti JF and Bost F: Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Mol Cancer Ther. 9:1092–1099. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haq R and Fisher DE: Improving apoptotic responses to targeted therapy. Oncotarget. 4:13312013. View Article : Google Scholar : PubMed/NCBI | |
Zakikhani M, Dowling R, Fantus IG, Sonenberg N and Pollak M: Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66:10269–10273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schulten HJ: Pleiotropic effects of metformin on cancer. Int J Mol Sci. 19:pii: E2850. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choi YK and Park KG: Metabolic roles of AMPK and metformin in cancer cells. Mol Cells. 36:279–287. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsushita M and Kawaguchi M: Immunomodulatory effects of drugs for effective cancer immunotherapy. J Oncol. 2018:86534892018. View Article : Google Scholar : PubMed/NCBI | |
Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, Kaplan J, Kalyan A, Altman JK, Platanias L and Giles F: Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget. 7:40767–40780. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goodwin PJ, Parulekar WR, Gelmon KA, Shepherd LE, Ligibel JA, Hershman DL, Rastogi P, Mayer IA, Hobday TJ, Lemieux J, et al: Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32. J Natl Cancer Inst. 107:pii: djv006. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV and Ford LG: Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 60:1639–1647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Laranjo-González M, Devleesschauwer B, Jansen F, Dorny P, Dupuy C, Requena-Méndez A and Allepuz A: Epidemiology and economic impact of bovine cysticercosis and taeniosis caused by Taenia saginata in northeastern Spain (Catalonia). Parasit Vectors. 11:3762018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Mook RA Jr, Premont RT and Wang J: Niclosamide: Beyond an antihelminthic drug. Cell Signal. 41:89–96. 2018. View Article : Google Scholar | |
Satoh K, Zhang L, Zhang Y, Chelluri R, Boufraqech M, Nilubol N, Patel D, Shen M and Kebebew E: Identification of niclosamide as a novel anticancer agent for adrenocortical carcinoma. Clin Cancer Res. 22:3458–3466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fonseca BD, Diering GH, Bidinosti MA, Dalal K, Alain T, Balgi AD, Forestieri R, Nodwell M, Rajadurai CV, Gunaratnam C, et al: Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 287:17530–17545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, Numata M and Roberge M: Regulation of mTORC1 signaling by pH. PLoS One. 6:e215492011. View Article : Google Scholar : PubMed/NCBI | |
Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM and Yeh TS: The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem. 106:682–692. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karakas D, Cevatemre B, Aztopal N, Ari F, Yilmaz VT and Ulukaya E: Addition of niclosamide to palladium(II) sacchari-nate complex of terpyridine results in enhanced cytotoxic activity inducing apoptosis on cancer stem cells of breast cancer. Bioorg Med Chem. 23:5580–5586. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chen X, Ward T, Pegram M and Shen K: Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumour Biol. 37:9825–9835. 2016. View Article : Google Scholar : PubMed/NCBI | |
Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, Clary BM, Clay TM, Chen W, Morse MA and Lyerly HK: Antihelminth compound niclosamide downregu-lates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 71:4172–4182. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, Fichtner I, Schlag PM, Shoemaker RH and Stein U: Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst. 103:1018–1036. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suliman MA, Zhang Z, Na H, Ribeiro AL, Zhang Y, Niang B, Hamid AS, Zhang H, Xu L and Zuo Y: Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int J Mol Med. 38:776–784. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arend RC, Londoño-Joshi AI, Gangrade A, Katre AA, Kurpad C, Li Y, Samant RS, Li PK, Landen CN, Yang ES, et al: Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget. 7:86803–86815. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wieland A, Trageser D, Gogolok S, Reinartz R, Höfer H, Keller M, Leinhaas A, Schelle R, Normann S, Klaas L, et al: Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 19:4124–4136. 2013. View Article : Google Scholar : PubMed/NCBI | |
Medina Enriquez MM, Félix AJ, Ciudad CJ and Noé V: Cancer immunotherapy using PolyPurine reverse hoogsteen hairpins targeting the PD-1/PD-L1 pathway in human tumor cells. PLoS One. 13:e02068182018. View Article : Google Scholar : PubMed/NCBI | |
Cardozo AJ, Gómez DE and Argibay PF: Transcriptional char-acterization of Wnt and Notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. J Mol Neurosci. 44:186–194. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, Sun X, Wu Y, Zhou J and Pan J: Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 70:2516–2527. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lopes GL, Vattimo EF and Castro Junior G: Identifying activating mutations in the EGFR gene: Prognostic and therapeutic implications in non-small cell lung cancer. J Bras Pneumol. 41:365–375. 2015.In English, Portuguese. View Article : Google Scholar : PubMed/NCBI | |
Li R, Hu Z, Sun SY, Chen ZG, Owonikoko TK, Sica GL, Ramalingam SS, Curran WJ, Khuri FR and Deng X: Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol Cancer Ther. 12:2200–2212. 2013. View Article : Google Scholar : PubMed/NCBI | |
You S, Li R, Park D, Xie M, Sica GL, Cao Y, Xiao ZQ and Deng X: Disruption of STAT3 by niclosamide reverses radio-resistance of human lung cancer. Mol Cancer Ther. 13:606–616. 2014. View Article : Google Scholar | |
Lee SL, Son AR, Ahn J and Song JY: Niclosamide enhances ROS-mediated cell death through c-Jun activation. Biomed Pharmacother. 68:619–624. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim MO, Choe MH, Yoon YN, Ahn J, Yoo M, Jung KY, An S, Hwang SG, Oh JS and Kim JS: Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells. Biochem Pharmacol. 144:78–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Nan G, Yan Z, Zeng L, Deng Y, Ye J, Zhang Z, Qiao M, Li R, Denduluri S, et al: The anthelmintic drug niclosamide inhibits the proliferative activity of human osteosarcoma cells by targeting multiple signal pathways. Curr Cancer Drug Targets. 15:726–738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MW, Sytwu HK, Chen CK, Chang CC, Nephew KP, et al: Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 11:1703–1712. 2012. View Article : Google Scholar : PubMed/NCBI | |
King ML, Lindberg ME, Stodden GR, Okuda H, Ebers SD, Johnson A, Montag A, Lengyel E, MacLean Ii JA and Hayashi K: WNT7A/β-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene. 34:3452–3462. 2015. View Article : Google Scholar | |
Rodriguez-Vida A, Galazi M, Rudman S, Chowdhury S and Sternberg CN: Enzalutamide for the treatment of metastatic castration-resistant prostate cancer. Drug Des Devel Ther. 9:3325–3339. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aboukameel A, Muqbil I, Baloglu E, Senapedis W, Landesman Y, Argueta C, Kauffman M, Chang H, Kashyap T, Shacham S, et al: Downregulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Oncotarget. 9:35327–35342. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Armstrong CM, Lou W, Lombard AP, Cucchiara V, Gu X, Yang JC, Nadiminty N, Pan CX, Evans CP and Gao AC: Niclosamide and bicalutamide combination treatment overcomes enzalutamide- and Bicalutamide-resistant prostate cancer. Mol Cancer Ther. 16:1521–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ippolito JE, Brandenburg MW, Ge X, Crowley JR, Kirmess KM, Som A, D'Avignon DA, Arbeit JM, Achilefu S, Yarasheski KE and Milbrandt J: Extracellular pH modulates neuroendocrine prostate cancer cell metabolism and susceptibility to the mitochondrial inhibitor niclosamide. PLoS One. 11:e01596752016. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Liu F, Zeng L, He F, Zhang R, Yan S, Zeng Z, Shu Y, Zhao C, Wu X, et al: Niclosamide exhibits potent anticancer activity and synergizes with sorafenib in human renal cell cancer cells. Cell Physiol Biochem. 47:957–971. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang L, Shen H, Lin H and Li D: Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem Biophys Res Commun. 484:416–421. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang WL, Hsu LC, Leu WJ, Chen CS and Guh JH: Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: A crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget. 6:39806–39820. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mirković B, Renko M, Turk S, Sosič I, Jevnikar Z, Obermajer N, Turk D, Gobec S and Kos J: Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem. 6:1351–1356. 2011. View Article : Google Scholar | |
Zhang QI, Wang S, Yang D, Pan K, Li L and Yuan S: Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing. Oncol Lett. 11:3265–3272. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao H, Du Y, Zhang Z, Cao B, Zhao J, Zhou H and Mao X: Nitroxoline shows antimyeloma activity by targeting the TRIM25/p53 axle. Anticancer Drugs. 28:376–383. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meek IL, Van de Laar MA and E Vonkeman H: Non-steroidal Anti-inflammatory drugs: An overview of cardiovascular risks. Pharmaceuticals (Basel). 3:2146–2162. 2010. View Article : Google Scholar | |
Tóth L, Muszbek L and Komáromi I: Mechanism of the irreversible inhibition of human cyclooxygenase-1 by aspirin as predicted by QM/MM calculations. J Mol Graph Model. 40:99–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Chen F and Shang L: Advances in antitumor effects of NSAIDs. Cancer Manag Res. 10:4631–4640. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chan AT, Ogino S and Fuchs CS: Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 356:2131–2142. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mohammed A, Yarla NS, Madka V and Rao CV: Clinically relevant Anti-inflammatory agents for chemoprevention of colorectal cancer: New perspectives. Int J Mol Sci. 19:pii: E2332. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, Chaussade S and Baron JA: Aspirin for the chemoprevention of colorectal adenomas: Meta-analysis of the randomized trials. J Natl Cancer Inst. 101:256–266. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Yang T, Gan Y, Li W, Wang C, Gong Y and Lu Z: Associations between aspirin use and the risk of cancers: A meta-analysis of observational studies. BMC Cancer. 18:2882018. View Article : Google Scholar : PubMed/NCBI | |
Gaist D, García-Rodríguez LA, Sørensen HT, Hallas J and Friis S: Use of low-dose aspirin and non-aspirin nonsteroidal anti-inflammatory drugs and risk of glioma: A case-control study. Br J Cancer. 108:1189–1194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fink SP, Dawson DM, Zhang Y, Kresak A, Lawrence EG, Yang P, Chen Y, Barnholtz-Sloan JS, Willis JE, Kopelovich L and Markowitz SD: Sulindac reversal of 15-PGDH-mediated resistance to colon tumor chemoprevention with NSAIDs. Carcinogenesis. 36:291–298. 2015. View Article : Google Scholar : | |
Umar A, Steele VE, Menter DG and Hawk ET: Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Semin Oncol. 43:65–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balta MG, Loos BG and Nicu EA: Emerging concepts in the resolution of periodontal inflammation: A role for resolvin E1. Front Immunol. 8:16822017. View Article : Google Scholar | |
Umar A, Boisseau M, Yusup A, Upur H, Bégaud B and Moore N: Interactions between aspirin and COX-2 inhibitors or NSAIDs in a rat thrombosis model. Fundam Clin Pharmacol. 18:559–563. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stark LA, Reid K, Sansom OJ, Din FV, Guichard S, Mayer I, Jodrell DI, Clarke AR and Dunlop MG: Aspirin activates the NF-kappaB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis. 28:968–976. 2007. View Article : Google Scholar | |
Rayburn ER, Ezell SJ and Zhang R: Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol. 1:29–43. 2009. View Article : Google Scholar : PubMed/NCBI | |
McNicol E, Strassels S, Goudas L, Lau J and Carr D: Nonsteroidal anti-inflammatory drugs, alone or combined with opioids, for cancer pain: A systematic review. J Clin Oncol. 22:1975–1992. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thun MJ, Henley SJ and Patrono C: Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 94:252–266. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hall JJ, Bolina M, Chatterley T and Jamali F: Interaction between Low-dose methotrexate and nonsteroidal Anti-inflammatory drugs, penicillins, and proton pump inhibitors. Ann Pharmacother. 51:163–178. 2017. View Article : Google Scholar | |
Zarghi A and Arfaei S: Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran J Pharm Res. 10:655–683. 2011.PubMed/NCBI | |
Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E and Bertagnolli M; Adenoma Prevention with Celecoxib (APC) Study Investigators: Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 352:1071–1080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Cho NL, Zauber AG, Hsu M, Dawson D, Srivastava A, Mitchell-Richards KA, Markowitz SD and Bertagnolli MM: Chemopreventive efficacy of the Cyclooxygenase-2 (Cox-2) inhibitor, celecoxib, is predicted by adenoma expression of Cox-2 and 15-PGDH. Cancer Epidemiol Biomarkers Prev. 27:728–736. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bowers LW, Maximo IX, Brenner AJ, Beeram M, Hursting SD, Price RS, Tekmal RR, Jolly CA and deGraffenried LA: NSAID use reduces breast cancer recurrence in overweight and obese women: Role of prostaglandin-aromatase interactions. Cancer Res. 74:4446–4457. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Chen Y, Liu H, Yang J, Song X, Zhao J, He N, Zhou CJ, Wang Y, Huang C and Dong Q: Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget. 8:115254–115269. 2017. | |
Yeh CT, Yao CJ, Yan JL, Chuang SE, Lee LM, Chen CM, Yeh CF, Li CH and Lai GM: Apoptotic cell death and inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by an active fraction (HS7) from taiwanofungus camphoratus. Evid Based Complement Alternat Med. 2011:7502302011. View Article : Google Scholar | |
Yang Y and Gao L: Celecoxib alleviates memory deficits by downregulation of COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat model. J Mol Neurosci. 62:188–198. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hao Q, Cao W, Vadgama JV and Wu Y: Celecoxib in breast cancer prevention and therapy. Cancer Manag Res. 10:4653–4667. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Li WB, Liu JB, Lu JW and Feng JF: Autophagy: Novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 7:471–484. 2018. View Article : Google Scholar | |
Toloczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Nowaszewska BK, Celińska-Janowicz K and Miltyk W: Celecoxib in cancer therapy and prevention-review. Curr Drug Targets. 20:302–315. 2019. View Article : Google Scholar | |
Leidgens V, Seliger C, Jachnik B, Welz T, Leukel P, Vollmann-Zwerenz A, Bogdahn U, Kreutz M, Grauer OM and Hau P: Ibuprofen and diclofenac restrict migration and proliferation of human glioma cells by distinct molecular mechanisms. PLoS One. 10:e01406132015. View Article : Google Scholar : PubMed/NCBI | |
Barbarić M, Kralj M, Marjanović M, Husnjak I, Pavelić K, Filipović-Grcić J, Zorc D and Zorc B: Synthesis and in vitro antitumor effect of diclofenac and fenoprofen thiolated and nonthiolated polyaspartamide-drug conjugates. Eur J Med Chem. 42:20–29. 2007. View Article : Google Scholar | |
Arisan ED, Ergül Z, Bozdağ G, Rencüzoğulları Ö, Çoker- Gürkan A, Obakan-Yerlikaya P, Coşkun D and Palavan-Ünsal N: Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol Biol Rep. 45:2175–2184. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fosslien E: Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 37:431–502. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lau L, Hansford LM, Cheng LS, Hang M, Baruchel S, Kaplan DR and Irwin MS: Cyclooxygenase inhibitors modulate the p53/HDM2 pathway and enhance chemotherapy-induced apoptosis in neuroblastoma. Oncogene. 26:1920–1931. 2007. View Article : Google Scholar | |
Andrews P, Zhao X, Allen J, Li F and Chang M: A comparison of the effectiveness of selected non-steroidal anti-inflammatory drugs and their derivatives against cancer cells in vitro. Cancer Chemother Pharmacol. 61:203–214. 2008. View Article : Google Scholar | |
Bombardo M, Malagola E, Chen R, Rudnicka A, Graf R and Sonda S: Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation. Br J Pharmacol. 175:335–347. 2018. View Article : Google Scholar : | |
Samal SK, Routray S, Veeramachaneni GK, Dash R and Botlagunta M: Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 5:99822015. View Article : Google Scholar : PubMed/NCBI | |
Retsky M, Rogers R, Demicheli R, Hrushesky WJ, Gukas I, Vaidya JS, Baum M, Forget P, Dekock M and Pachmann K: NSAID analgesic ketorolac used perioperatively may suppress early breast cancer relapse: Particular relevance to triple negative subgroup. Breast Cancer Res Treat. 134:881–888. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hudson LG, Cook LS, Grimes MM, Muller CY, Adams SF and Wandinger-Ness A: Dual actions of ketorolac in metastatic ovarian cancer. Cancers (Basel). 11:pii: E1049. 2019. View Article : Google Scholar | |
Chaudhary SC, Waseem M, Rana M, Xu H, Kopelovich L, Elmets CA and Athar M: Naproxen inhibits UVB-induced basal cell and squamous cell carcinoma development in Ptch1+/-/SKH-1 hairless mice. Photochem Photobiol. 93:1016–1024. 2017. View Article : Google Scholar : PubMed/NCBI | |
Campione E, Paternò EJ, Candi E, Falconi M, Costanza G, Diluvio L, Terrinoni A, Bianchi L and Orlandi A: The relevance of piroxicam for the prevention and treatment of nonmela-noma skin cancer and its precursors. Drug Des Devel Ther. 9:5843–5850. 2015. View Article : Google Scholar : | |
Mackay AR, Gomez DE, Nason AM and Thorgeirsson UP: Studies on the effects of laminin, E-8 fragment of laminin and synthetic laminin peptides PA22-2 and YIGSR on matrix metalloproteinases and tissue inhibitor of metalloproteinase expression. Lab Invest. 70:800–806. 1994.PubMed/NCBI | |
Philipp-Dormston WG: Field cancerization: From molecular basis to selective field-directed management of actinic keratosis. Curr Probl Dermatol. 46:115–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khodaie F, Khazaei-Poul Y and Moini-Zanjani T: Anti- proliferative effects of piroxicam and nimesulide on A431 human squamous carcinoma cell line. Int J Cancer Manag. 10:e75652017. View Article : Google Scholar | |
Campione E, Diluvio L, Paterno EJ and Chimenti S: Topical treatment of actinic keratoses with piroxicam 1% gel: A preliminary open-label study utilizing a new clinical score. Am J Clin Dermatol. 11:45–50. 2010. View Article : Google Scholar | |
Palmerini E, Fan K, Yang K, Risio M, Edelmann W, Lipkin M and Biasco G: Piroxicam increases colon tumorigenesis and promotes apoptosis in Mlh1 +/-/Apc1638(N/+) mice. Anticancer Res. 27:3807–3812. 2007. | |
Scheper MA, Nikitakis NG, Chaisuparat R, Montaner S and Sauk JJ: Sulindac induces apoptosis and inhibits tumor growth in vivo in head and neck squamous cell carcinoma. Neoplasia. 9:192–199. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giardiello FM, Yang VW, Hylind LM, Krush AJ, Petersen GM, Trimbath JD, Piantadosi S, Garrett E, Geiman DE, Hubbard W, et al: Primary chemoprevention of familial adeno-matous polyposis with sulindac. N Engl J Med. 346:1054–1059. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H and Niitsu Y: Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 339:1277–1284. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ferguson JE III and Carson CC III: Phosphodiesterase type 5 inhibitors as a treatment for erectile dysfunction: Current information and new horizons. Arab J Urol. 11:222–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Phosphodiesterase type 5 (PDE5) Inhibitors. LiverTox: Clinical and research information on drug-induced liver injury Bethesda (MD): 2012 | |
Sandner P, Tinel H, Stelte-Ludwig B, Huetter J, Neuser D, Bischoff E and Ulbrich E: PDE5 inhibitors in treatment of benign prostatic syndrome. Urologe A. 46:1189–1192. 2007.In German. View Article : Google Scholar : PubMed/NCBI | |
Burnett AL: The role of nitric oxide in erectile dysfunction: Implications for medical therapy. J Clin Hypertens (Greenwich). 8(12 Suppl 4): S53–S62. 2006. View Article : Google Scholar | |
Barone I, Giordano C, Bonofiglio D, Ando S and Catalano S: Phosphodiesterase type 5 and cancers: Progress and challenges. Oncotarget. 8:99179–99202. 2017. View Article : Google Scholar : PubMed/NCBI | |
Das A, Xi L and Kukreja RC: Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem. 283:29572–29585. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goble RR and Frangoulis MA: Lymphangioma circumscriptum of the eyelids and conjunctiva. Br J Ophthalmol. 74:574–575. 1990. View Article : Google Scholar : PubMed/NCBI | |
Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V and Borrello I: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 203:2691–2702. 2006. View Article : Google Scholar : PubMed/NCBI | |
Whitehead CM, Earle KA, Fetter J, Xu S, Hartman T, Chan DC, Zhao TL, Piazza G, Klein-Szanto AJ, Pamukcu R, et al: Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol Cancer Ther. 2:479–488. 2003.PubMed/NCBI | |
Pusztai L, Zhen JH, Arun B, Rivera E, Whitehead C, Thompson WJ, Nealy KM, Gibbs A, Symmans WF, Esteva FJ, et al: Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol. 21:3454–3461. 2003. View Article : Google Scholar : PubMed/NCBI | |
Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN, Park MA, Qureshi I, Lee R, Dent P and Kukreja RC: Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci USA. 107:18202–18207. 2010. View Article : Google Scholar : PubMed/NCBI | |
Di X, Gennings C, Bear HD, Graham LJ, Sheth CM, White KL Jr and Gewirtz DA: Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res Treat. 124:349–360. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Mei L, Fan X, Tang C, Ji X, Hu X, Shi W, Qian Y, Hussain M, Wu J, et al: Phosphodiesterase 5/protein kinase G signal governs stemness of prostate cancer stem cells through Hippo pathway. Cancer Lett. 378:38–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C: Phosphodiesterase-5 inhibitors and benign prostatic hyperplasia. Curr Opin Urol. 20:49–54. 2010. View Article : Google Scholar | |
Tiwari AK and Chen ZS: Repurposing phosphodiesterase-5 inhibitors as chemoadjuvants. Front Pharmacol. 4:822013. View Article : Google Scholar : PubMed/NCBI | |
Chan DC, Earle KA, Zhao TL, Helfrich B, Zeng C, Baron A, Whitehead CM, Piazza G, Pamukcu R, Thompson WJ, et al: Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors. Clin Cancer Res. 8:904–912. 2002.PubMed/NCBI | |
Bunn PA Jr, Chan DC, Earle K, Zhao TL, Helfrich B, Kelly K, Piazza G, Whitehead CM, Pamukcu R, Thompson W and Alila H: Preclinical and clinical studies of docetaxel and exisu-lind in the treatment of human lung cancer. Semin Oncol. 29(1 Suppl 4): S87–S94. 2002. View Article : Google Scholar | |
Li Q and Shu Y: Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res. 31:86–96. 2014. View Article : Google Scholar | |
Li WQ, Qureshi AA, Robinson KC and Han J: Sildenafil use and increased risk of incident melanoma in US men: A prospective cohort study. JAMA Intern Med. 174:964–970. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marino N, Collins JW, Shen C, Caplen NJ, Merchant AS, Gökmen-Polar Y, Goswami CP, Hoshino T, Qian Y, Sledge GW Jr and Steeg PS: Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis. 31:771–786. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tinsley HN, Gary BD, Keeton AB, Zhang W, Abadi AH, Reynolds RC and Piazza GA: Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol Cancer Ther. 8:3331–3340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tinsley HN, Gary BD, Keeton AB, Lu W, Li Y and Piazza GA: Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells. Cancer Prev Res (Phila). 4:1275–1284. 2011. View Article : Google Scholar | |
Thompson HJ, Jiang C, Lu J, Mehta RG, Piazza GA, Paranka NS, Pamukcu R and Ahnen DJ: Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res. 57:267–271. 1997.PubMed/NCBI | |
Rice PL, Goldberg RJ, Ray EC, Driggers LJ and Ahnen DJ: Inhibition of extracellular signal-regulated kinase 1/2 phos-phorylation and induction of apoptosis by sulindac metabolites. Cancer Res. 61:1541–1547. 2001.PubMed/NCBI | |
Mei XL, Yang Y, Zhang YJ, Li Y, Zhao JM, Qiu JG, Zhang WJ, Jiang QW, Xue YQ, Zheng DW, et al: Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res. 5:3311–3324. 2015. | |
Islam BN, Sharman SK, Hou Y, Bridges AE, Singh N, Kim S, Kolhe R, Trillo-Tinoco J, Rodriguez PC, Berger FG, et al: Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev Res (Phila). 10:377–388. 2017. View Article : Google Scholar | |
Giordano D, Giorgi M, Sette C, Biagioni S and Augusti-Tocco G: cAMP-dependent induction of PDE5 expression in murine neuro-blastoma cell differentiation. FEBS Lett. 446:218–222. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L and Sukhatme VP: Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience. 12:8242018. View Article : Google Scholar : PubMed/NCBI | |
Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, Grant S, Poklepovic A and Dent P: PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther. 15:758–767. 2014. View Article : Google Scholar : PubMed/NCBI | |
Black KL, Yin D, Ong JM, Hu J, Konda BM, Wang X, Ko MK, Bayan JA, Sacapano MR, Espinoza A, et al: PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 1230:290–302. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Ljubimova JY, Inoue S, Konda B, Patil R, Ding H, Espinoza A, Wawrowsky KA, Patil C, Ljubimov AV and Black KL: Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS One. 5:e101082010. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Chen W, Zhang Q, Liu Y, Qiao X, Meng K and Mao Y: Phosphodiesterase type 5 inhibitor Tadalafil increases Rituximab treatment efficacy in a mouse brain lymphoma model. J Neurooncol. 122:35–42. 2015. View Article : Google Scholar | |
Sponziello M, Verrienti A, Rosignolo F, De Rose RF, Pecce V, Maggisano V, Durante C, Bulotta S, Damante G, Giacomelli L, et al: PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells. Endocrine. 50:434–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Loeb S, Folkvaljon Y, Lambe M, Robinson D, Garmo H, Ingvar C and Stattin P: Use of phosphodiesterase type 5 inhibitors for erectile dysfunction and risk of malignant melanoma. JAMA. 313:2449–2455. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matthews A, Langan SM, Douglas IJ, Smeeth L and Bhaskaran K: Phosphodiesterase type 5 inhibitors and risk of malignant melanoma: Matched cohort study using primary care data from the UK clinical practice research datalink. PLoS Med. 13:e10020372016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Shen Y, Wang J, Xue Y, Liao L, Thapa S and Ji K: Relation of phosphodiesterase type 5 inhibitors and malignant melanoma: A meta-analysis and systematic review. Oncotarget. 8:46461–46467. 2017.PubMed/NCBI | |
Lee JK, Nam DH and Lee J: Repurposing antipsychotics as glio-blastoma therapeutics: Potentials and challenges. Oncol Lett. 11:1281–1286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Ren W, Feng Y, Wei T, Guo M, Guo J, Zhao J, Song X, Wang M, Zhao T, et al: The enhanced antitumour response of pimozide combined with the IDO inhibitor LMT in melanoma. Int J Oncol. 53:949–960. 2018.PubMed/NCBI | |
Cai N, Zhou W, Ye LL, Chen J, Liang QN, Chang G and Chen JJ: The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression. Am J Transl Res. 9:3853–3866. 2017.PubMed/NCBI | |
Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB, Terrell S, Klitgaard JL, Santo L, Addorio MR, et al: The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood. 117:3421–3429. 2011. View Article : Google Scholar : PubMed/NCBI | |
McGrath PC and Neifeld JP: Inhibition of murine neuroblastoma growth by dopamine antagonists. J Surg Res. 36:413–419. 1984. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Tao J, Jiang Z, Guo D and Tang J: Pimozide suppresses colorectal cancer via inhibition of Wnt/beta-catenin signaling pathway. Life Sci. 209:267–273. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA and Worley JF III: Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res. 50:5399–5405. 1990.PubMed/NCBI | |
Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang Z: Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Chen MK, Yu HT, Zhong ZH, Cai N, Chen GZ, Zhang P and Chen JJ: The antipsychotic drug pimozide inhibits cell growth in prostate cancer through suppression of STAT3 activation. Int J Oncol. 48:322–328. 2016. View Article : Google Scholar | |
Goncalves JM, Silva CAB, Rivero ERC and Cordeiro MMR: Inhibition of cancer stem cells promoted by Pimozide. Clin Exp Pharmacol Physiol. 46:116–125. 2019. View Article : Google Scholar | |
Fako V, Yu Z, Henrich CJ, Ransom T, Budhu AS and Wang XW: Inhibition of wnt/β-catenin signaling in hepatocellular carcinoma by an antipsychotic drug pimozide. Int J Biol Sci. 12:768–775. 2016. View Article : Google Scholar : | |
Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, Doo Kim N, Cho Han D and Kwon BM: Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci. 110:3788–3801. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dakir EH, Pickard A, Srivastava K, McCrudden CM, Gross SR, Lloyd S, Zhang SD, Margariti A, Morgan R, Rudland PS and El-Tanani M: The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget. 9:34889–34910. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Park Y, Lee BM, Kim HS and Yoon S: P-gp inhibition by the Anti-psychotic drug pimozide increases apoptosis, as well as expression of pRb and pH2AX in Highly Drug-resistant KBV20C cells. Anticancer Res. 38:5685–5692. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen JJ, Zhang LN, Cai N, Zhang Z and Ji K: Antipsychotic agent pimozide promotes reversible proliferative suppression by inducing cellular quiescence in liver cancer. Oncol Rep. 42:1101–1109. 2019.PubMed/NCBI | |
Clarke GL, Bhattacherjee A, Tague SE, Hasan W and Smith PG: ß-adrenoceptor blockers increase cardiac sympathetic innervation by inhibiting autoreceptor suppression of axon growth. J Neurosci. 30:12446–12454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sica D, Frishman WH and Manowitz N: Pharmacokinetics of propranolol after single and multiple dosing with sustained release propranolol or propranolol CR (innopran XL), a new chronotherapeutic formulation. Heart Dis. 5:176–181. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Zheng J, Zhang L, Yuan W and Zhao H: Oral propranolol combined with topical timolol for compound infantile heman-giomas: A retrospective study. Sci Rep. 6:197652016. View Article : Google Scholar | |
Rotter A and de Oliveira ZNP: Infantile hemangioma: Pathogenesis and mechanisms of action of propranolol. J Dtsch Dermatol Ges. 15:1185–1190. 2017.PubMed/NCBI | |
de Lorenzo MS, Ripoll GV, Yoshiji H, Yamazaki M, Thorgeirsson UP, Alonso DF and Gomez DE: Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo. 17:45–50. 2003.PubMed/NCBI | |
Storch CH and Hoeger PH: Propranolol for infantile haeman-giomas: Insights into the molecular mechanisms of action. Br J Dermatol. 163:269–274. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wagner MJ, Cranmer LD, Loggers ET and Pollack SM: Propranolol for the treatment of vascular sarcomas. J Exp Pharmacol. 10:51–58. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, Geppetti P and Gandini S: Propranolol for Off-label treatment of patients with melanoma: Results from a cohort study. JAMA Oncol. 4:e1729082018. View Article : Google Scholar : | |
Barron TI, Connolly RM, Sharp L, Bennett K and Visvanathan K: Beta blockers and breast cancer mortality: A population-based study. J Clin Oncol. 29:2635–2644. 2011. View Article : Google Scholar : PubMed/NCBI | |
Szewczyk M, Richter C, Briese V and Richter DU: A retrospective in vitro study of the impact of anti-diabetics and cardioselective pharmaceuticals on breast cancer. Anticancer Res. 32:2133–2138. 2012.PubMed/NCBI | |
Zhang D, Ma Q, Shen S and Hu H: Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: The study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas. 38:94–100. 2009. View Article : Google Scholar | |
Annabi B, Lachambre MP, Plouffe K, Moumdjian R and Beliveau R: Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metallopro-teinase-9 secretion. Pharmacol Res. 60:438–445. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sminia P, Kuipers G, Geldof A, Lafleur V and Slotman B: COX-2 inhibitors act as radiosensitizer in tumor treatment. Biomed Pharmacother. 59(Suppl 2): S272–S275. 2005. View Article : Google Scholar | |
Geoerger B, Gaspar N, Opolon P, Morizet J, Devanz P, Lecluse Y, Valent A, Lacroix L, Grill J and Vassal G: EGFR tyrosine kinase inhibition radiosensitizes and induces apoptosis in malignant glioma and childhood ependymoma xenografts. Int J Cancer. 123:209–216. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann M, Zouhair A, Azria D and Ozsahin M: The epidermal growth factor receptor (EGFR) in head and neck cancer: Its role and treatment implications. Radiat Oncol. 1:112006. View Article : Google Scholar : PubMed/NCBI | |
Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, André N, Carré M, Scharovsky OG and Menacho Márquez M: Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget. 8:2874–2889. 2017. View Article : Google Scholar : | |
Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G, Rains S, Sanchez LA, Badri N, Otoukesh S, et al: Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget. 8:6446–6460. 2017. View Article : Google Scholar | |
Pantziarka P, Bryan BA, Crispino S and Dickerson EB: Propranolol and breast cancer-a work in progress. Ecancermedicalscience. 12:ed822018. View Article : Google Scholar : PubMed/NCBI | |
Gomez DE, Hartzler JL, Corbitt RH, Nason AM and Thorgeirsson UP: Immunomagnetic separation as a final purification step of liver endothelial cells. In Vitro Cell Dev Biol Anim. 29:451–455. 1993. View Article : Google Scholar : PubMed/NCBI | |
Liao JQ, Su XQ, Peng XC, Shi HS, Zhang HL and Yang L: Antitumor effect by combination of recombinant endostatin adenovirus with carboplatin. Sichuan Da Xue Xue Bao Yi Xue Ban. 41:386–389. 2010.In Chinese. PubMed/NCBI | |
Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N and Kavallaris M: β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 108:2485–2494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shah SM, Carey IM, Owen CG, Harris T, Dewilde S and Cook DG: Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. Br J Clin Pharmacol. 72:157–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
Forbes A, Anoopkumar-Dukie S, Chess-Williams R and McDermott C: Relative cytotoxic potencies and cell death mechanisms of alpha1-adrenoceptor antagonists in prostate cancer cell lines. Prostate. 76:757–766. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miller RG, Mitchell JD and Moore DH: Riluzole for amyo-trophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev: CD001447. 2012. View Article : Google Scholar | |
Song JH, Huang CS, Nagata K, Yeh JZ and Narahashi T: Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther. 282:707–714. 1997.PubMed/NCBI | |
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013. View Article : Google Scholar : | |
Bridges RJ, Natale NR and Patel SA: System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 165:20–34. 2012. View Article : Google Scholar : | |
Sperling S, Aung T, Martin S, Rohde V and Ninkovic M: Riluzole: A potential therapeutic intervention in human brain tumor stem-like cells. Oncotarget. 8:96697–96709. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seidlitz EP, Sharma MK, Saikali Z, Ghert M and Singh G: Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis. 26:781–787. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sattler R, Tyler B, Hoover B, Coddington LT, Recinos V, Hwang L, Brem H and Rothstein JD: Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. J Neurosurg. 119:878–886. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shin SS, Jeong BS, Wall BA, Li J, Shan NL, Wen Y, Goydos JS and Chen S: Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis. 7:862018. View Article : Google Scholar : PubMed/NCBI | |
Wadosky KM, Shourideh M, Goodrich DW and Koochekpour S: Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and Castration-resistant prostate cancer cells. Prostate. 79:140–150. 2019. View Article : Google Scholar | |
Yip D, Le MN, Chan JL, Lee JH, Mehnert JA, Yudd A, Kempf J, Shih WJ, Chen S and Goydos JS: A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin Cancer Res. 15:3896–3902. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fumagalli E, Funicello M, Rauen T, Gobbi M and Mennini T: Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 578:171–176. 2008. View Article : Google Scholar | |
Chen Y, Hu S, Mu L, Zhao B, Wang M, Yang N, Bao G, Zhu C and Wu X: Slc7a11 modulated by POU2F1 is involved in pigmentation in rabbit. Int J Mol Sci. 20:pii: E2493. 2019. | |
Florell SR, Bowen AR, Hanks AN, Murphy KJ and Grossman D: Proliferation, apoptosis, and survivin expression in a spectrum of melanocytic nevi. J Cutan Pathol. 32:45–49. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wall BA, Wangari-Talbot J, Shin SS, Schiff D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS and Chen S: Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells. Pigment Cell Melanoma Res. 27:263–274. 2014. View Article : Google Scholar : | |
Lee HJ, Wall BA, Wangari-Talbot J, Shin SS, Rosenberg S, Chan JL, Namkoong J, Goydos JS and Chen S: Glutamatergic pathway targeting in melanoma: Single-agent and combinatorial therapies. Clin Cancer Res. 17:7080–7092. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu LJ, Wall BA and Chen S: The current management of brain metastasis in melanoma: A focus on riluzole. Expert Rev Neurother. 15:779–792. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davies JT, Delfino SF, Feinberg CE, Johnson MF, Nappi VL, Olinger JT, Schwab AP and Swanson HI: Current and emerging uses of statins in clinical therapeutics: A review. Lipid Insights. 9:13–29. 2016. View Article : Google Scholar : PubMed/NCBI | |
Willey JZ and Elkind MS: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases. Arch Neurol. 67:1062–1067. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ricco N, Flor A, Wolfgeher D, Efimova EV, Ramamurthy A, Appelbe OK, Brinkman J, Truman AW, Spiotto MT and Kron SJ: Mevalonate pathway activity as a determinant of radiation sensitivity in head and neck cancer. Mol Oncol. 13:1927–1943. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zodda D, Giammona R and Schifilliti S: Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy (Basel). 6:pii: E10. 2018. | |
Efimova EV, Ricco N, Labay E, Mauceri HJ, Flor AC, Ramamurthy A, Sutton HG, Weichselbaum RR and Kron SJ: HMG-CoA reductase inhibition delays DNA repair and promotes senescence after tumor irradiation. Mol Cancer Ther. 17:407–418. 2018. View Article : Google Scholar : | |
Waller DD, Park J and Tsantrizos YS: Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol. 54:41–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jeong A, Suazo KF, Wood WG, Distefano MD and Li L: Isoprenoids and protein prenylation: Implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol. 53:279–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alonso DF, Farina HG, Skilton G, Gabri MR, De Lorenzo MS and Gomez DE: Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res Treat. 50:83–93. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cardama GA, Gonzalez N, Maggio J, Menna PL and Gomez DE: Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol. 51:1025–1034. 2017. View Article : Google Scholar : PubMed/NCBI | |
Farina HG, Bublik DR, Alonso DF and Gomez DE: Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin Exp Metastasis. 19:551–559. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liao JK and Laufs U: Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 45:89–118. 2005. View Article : Google Scholar : PubMed/NCBI | |
Menna PL, Parera RL, Cardama GA, Alonso DF, Gomez DE and Farina HG: Enhanced cytostatic activity of statins in mouse mammary carcinoma cells overexpressing β2-chimaerin. Mol Med Rep. 2:97–102. 2009.PubMed/NCBI | |
Jakobisiak M and Golab J: Potential antitumor effects of statins (Review). Int J Oncol. 23:1055–1069. 2003.PubMed/NCBI | |
Undela K, Shah CS and Mothe RK: Statin use and risk of cancer: An overview of meta-analyses. World J Meta-Anal. 5:41–53. 2017. View Article : Google Scholar | |
Hu YB, Hu ED and Fu RQ: Statin use and cancer incidence in patients with type 2 diabetes mellitus: A network Meta-analysis. Gastroenterol Res Pract. 2018:86206822018. View Article : Google Scholar : PubMed/NCBI | |
Singh PP and Singh S: Statins are associated with reduced risk of gastric cancer: A systematic review and meta-analysis. Ann Oncol. 24:1721–1730. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomas T, Loke Y and Beales ILP: Systematic review and Meta-analysis: Use of statins is associated with a reduced incidence of oesophageal adenocarcinoma. J Gastrointest Cancer. 49:442–454. 2018. View Article : Google Scholar : | |
Pascual S, Herrera I and Irurzun J: New advances in hepatocel-lular carcinoma. World J Hepatol. 8:421–438. 2016. View Article : Google Scholar : PubMed/NCBI | |
Desai P, Chlebowski R, Cauley JA, Manson JE, Wu C, Martin LW, Jay A, Bock C, Cote M, Petrucelli N, et al: Prospective analysis of association between statin use and breast cancer risk in the women's health initiative. Cancer Epidemiol Biomarkers Prev. 22:1868–1876. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jacobs EJ, Newton CC, Thun MJ and Gapstur SM: Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Res. 71:1763–1771. 2011. View Article : Google Scholar : PubMed/NCBI | |
Boudreau DM, Yu O and Johnson J: Statin use and cancer risk: A comprehensive review. Expert Opin Drug Saf. 9:603–621. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roix JJ, Harrison SD, Rainbolt EA, Meshaw KR, McMurry AS, Cheung P and Saha S: Systematic repurposing screening in xeno-graft models identifies approved drugs with novel anti-cancer activity. PLoS One. 9:e1017082014. View Article : Google Scholar | |
Vargesson N: Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res C Embryo Today. 105:140–156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Therapontos C, Erskine L, Gardner ER, Figg WD and Vargesson N: Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA. 106:8573–8578. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shi Q and Chen L: Cereblon: A protein crucial to the multiple functions of immunomodulatory drugs as well as cell metabolism and disease generation. J Immunol Res. 2017:91306082017. View Article : Google Scholar : PubMed/NCBI | |
D'Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994. View Article : Google Scholar : PubMed/NCBI | |
Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 341:1565–1571. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sissung TM, Thordardottir S, Gardner ER and Figg WD: Current status of thalidomide and CC-5013 in the treatment of metastatic prostate cancer. Anticancer Agents Med Chem. 9:1058–1069. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mercurio A, Adriani G, Catalano A, Carocci A, Rao L, Lentini G, Cavalluzzi MM, Franchini C, Vacca A and Corbo F: A Mini-review on thalidomide: Chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem. 24:2736–2744. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aragon-Ching JB, Li H, Gardner ER and Figg WD: Thalidomide analogues as anticancer drugs. Recent Pat Anticancer Drug Discov. 2:167–174. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeldis JB, Knight R, Hussein M, Chopra R and Muller G: A review of the history, properties, and use of the immunomodulatory compound lenalidomide. Ann N Y Acad Sci. 1222:76–82. 2011. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A, Dimopoulos M, San Miguel J, Harousseau JL, Attal M, Hussein M, Knop S, Ludwig H, von Lilienfeld-Toal M and Sonneveld P: Lenalidomide in combination with dexa-methasone for the treatment of relapsed or refractory multiple myeloma. Blood Rev. 23:87–93. 2009. View Article : Google Scholar | |
Holstein SA, Suman VJ and McCarthy PL: Update on the role of lenalidomide in patients with multiple myeloma. Ther Adv Hematol. 9:175–190. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan WJ, Fan ZQ, Yang MJ, Pan YZ and Bai H: Molecular mechanism of CRBN in the activity of lenalidomid eagainst Myeloma-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 26:1240–1243. 2018.In Chinese. PubMed/NCBI | |
Ying L, YinHui T, Yunliang Z and Sun H: Lenalidomide and the risk of serious infection in patients with multiple myeloma: A systematic review and meta-analysis. Oncotarget. 8:46593–46600. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bringhen S, Offidani M, Palmieri S, Pisani F, Rizzi R, Spada S, Evangelista A, Di Renzo N, Musto P, Marcatti M, et al: Early mortality in myeloma patients treated with first-generation novel agents thalidomide, lenalidomide, bortezomib at diagnosis: A pooled analysis. Crit Rev Oncol Hematol. 130:27–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sherbet GV: Therapeutic potential of thalidomide and its analogues in the treatment of cancer. Anticancer Res. 35:5767–5772. 2015.PubMed/NCBI | |
Cipriani A, Reid K, Young AH, Macritchie K and Geddes J: Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev: CD003196. 2013. View Article : Google Scholar | |
Owens MJ and Nemeroff CB: Pharmacology of valproate. Psychopharmacol Bull. 37(Suppl 2): S17–S24. 2003. | |
Annunziato AT and Hansen JC: Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr. 9:37–61. 2000. View Article : Google Scholar : PubMed/NCBI | |
Legube G and Trouche D: Regulating histone acetyltransferases and deacetylases. EMBO Rep. 4:944–947. 2003. View Article : Google Scholar : PubMed/NCBI | |
Eckschlager T, Plch J, Stiborova M and Hrabeta J: Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 18:pii: E1414. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mauger TF, Kuennen RA, Smith RH and Sawyer W: Acanthamoeba and Stenotrophomonas maltophilia keratitis with fungal keratitis in the contralateral eye. Clin Ophthalmol. 4:1207–1209. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen HP, Zhao YT and Zhao TC: Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog. 20:35–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Eberharter A and Becker PB: Histone acetylation: A switch between repressive and permissive chromatin. Second in review series on chromatin dynamics EMBO Rep. 3:224–229. 2002. | |
Glozak MA and Seto E: Histone deacetylases and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moschos MM, Dettoraki M, Androudi S, Kalogeropoulos D, Lavaris A, Garmpis N, Damaskos C, Garmpi A and Tsatsos M: The role of histone deacetylase inhibitors in uveal melanoma: Current evidence. Anticancer Res. 38:3817–3824. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ji MM, Wang L, Zhan Q, Xue W, Zhao Y, Zhao X, Xu PP, Shen Y, Liu H, Janin A, et al: Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation. Autophagy. 11:2160–2171. 2015. View Article : Google Scholar | |
Sanaei M, Kavoosi F and Mansoori O: Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apop-tosis induction in the human colon cancer SW48 cells in vitro. Exp Oncol. 40:95–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chou YW, Chaturvedi NK, Ouyang S, Lin FF, Kaushik D, Wang J, Kim I and Lin MF: Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Lett. 311:177–186. 2011. View Article : Google Scholar : PubMed/NCBI | |
Witt D, Burfeind P, von Hardenberg S, Opitz L, Salinas-Riester G, Bremmer F, Schweyer S, Thelen P, Neesen J and Kaulfuss S: Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2. Carcinogenesis. 34:1115–1124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N and Cheong SC: Valproic acid: Growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck. 34:344–353. 2012. View Article : Google Scholar | |
Tran LNK, Kichenadasse G, Butler LM, Centenera MM, Morel KL, Ormsby RJ, Michael MZ, Lower KM and Sykes PJ: The combination of metformin and valproic acid induces synergistic apoptosis in the presence of p53 and androgen signaling in prostate cancer. Mol Cancer Ther. 16:2689–2700. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cerna T, Hrabeta J, Eckschlager T, Frei E, Schmeiser HH, Arlt VM and Stiborová M: The histone deacetylase inhibitor valproic acid exerts a synergistic cytotoxicity with the DNA-damaging drug ellipticine in neuroblastoma cells. Int J Mol Sci. 19:pii: E164. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Liang B, Jia H, Jiao Y, Pang Z and Huang Y: Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio. 7:798–810. 2017. View Article : Google Scholar : PubMed/NCBI | |
Terranova-Barberio M, Roca MS, Zotti AI, Leone A, Bruzzese F, Vitagliano C, Scogliamiglio G, Russo D, D'Angelo G, Franco R, et al: Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 7:7715–7731. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tung EW and Winn LM: Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol. 80:979–987. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abdelaleem M, Ezzat H, Osama M, Megahed A, Alaa W, Gaber A, Shafei A and Refaat A: Prospects for repurposing CNS drugs for cancer treatment. Oncol Rev. 13:4112019. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Wang P, Ma H, Zhang G, Yulin Z, Lu B, Wang H and Dong M: Suppression of T-type Ca2+ channels inhibited human laryngeal squamous cell carcinoma cell proliferation running title: Roles of T-type Ca2+ channels in LSCC cell proliferation. Clin Lab. 60:621–628. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun YH, Gao X, Tang YJ, Xu CL and Wang LH: Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J Androl. 27:671–678. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jensen RL and Wurster RD: Calcium channel antagonists inhibit growth of subcutaneous xenograft meningiomas in nude mice. Surg Neurol. 55:275–283. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ragel BT, Asher AL, Selden N and MacDonald JD: Self-assessment in neurological surgery: The SANS wired white paper. Neurosurgery. 59:759–766. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hajighasemi F and Mirshafiey A: Effect of verapamil on vascular endothelial growth factor production in immunocom-petent cells. Eur Respiratory J. 46:PA40112015. | |
Taylor JM and Simpson RU: Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res. 52:2413–2418. 1992.PubMed/NCBI | |
Yoshida J, Ishibashi T and Nishio M: Antiproliferative effect of Ca2+ channel blockers on human epidermoid carcinoma A431 cells. Eur J Pharmacol. 472:23–31. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wilson LE, D'Aloisio AA, Sandler DP and Taylor JA: Long-term use of calcium channel blocking drugs and breast cancer risk in a prospective cohort of US and Puerto Rican women. Breast Cancer Res. 18:612016. View Article : Google Scholar : PubMed/NCBI | |
Mason RP: Calcium channel blockers, apoptosis and cancer: Is there a biologic relationship? J Am Coll Cardiol. 34:1857–1866. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhao Y, Schwarz B, Mysliwietz J, Hartig R, Camaj P, Bao Q, Jauch KW, Guba M, Ellwart JW, et al: Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int J Oncol. 49:99–110. 2016. View Article : Google Scholar : PubMed/NCBI | |
Furuya N, Yu J, Byfield M, Pattingre S and Levine B: The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy. 1:46–52. 2005. View Article : Google Scholar | |
Kania E, Pajak B, O'Prey J, Sierra Gonzalez P, Litwiniuk A, Urbańska K, Ryan KM and Orzechowski A: Verapamil treatment induces cytoprotective autophagy by modulating cellular metabolism. FEBS J. 284:1370–1387. 2017. View Article : Google Scholar : PubMed/NCBI | |
Strigun A, Noor F, Pironti A, Niklas J, Yang TH and Heinzle E: Metabolic flux analysis gives an insight on verapamil induced changes in central metabolism of HL-1 cells. J Biotechnol. 155:299–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Granchi C and Minutolo F: Anticancer agents that counteract tumor glycolysis. ChemMedChem. 7:1318–1350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Lan H, Liu F, Wang S, Chen X, Jin K and Mou X: Anti-angiogenesis or pro-angiogenesis for cancer treatment: Focus on drug distribution. Int J Clin Exp Med. 8:8369–8376. 2015.PubMed/NCBI | |
Galeano E, Rojas JJ and Martinez A: Pharmacological developments obtained from marine natural products and current pipeline perspective. Nat Prod Commun. 6:287–300. 2011.PubMed/NCBI | |
De Clercq E: The history of antiretrovirals: Key discoveries over the past 25 years. Rev Med Virol. 19:287–299. 2009. View Article : Google Scholar : PubMed/NCBI | |
Falchetti A, Franchi A, Bordi C, Mavilia C, Masi L, Cioppi F, Recenti R, Picariello L, Marini F, Del Monte F, et al: Azidothymidine induces apoptosis and inhibits cell growth and telomerase activity of human parathyroid cancer cells in culture. J Bone Miner Res. 20:410–418. 2005. View Article : Google Scholar : PubMed/NCBI | |
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC and Gomez DE: Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet. 96:3–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mason M, Schuller A and Skordalakes E: Telomerase structure function. Curr Opin Struct Biol. 21:92–100. 2011. View Article : Google Scholar | |
Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gomez D, Kassim A and Olivero O: Preferential incorporation of 3'-azido-2′,3′-dideoxythymidine (azt) in telomeric sequences of cho cells. Int J Oncol. 7:1057–1060. 1995.PubMed/NCBI | |
Gomez DE, Armando RG and Alonso DF: AZT as a telomerase inhibitor. Front Oncol. 2:1132012. View Article : Google Scholar : PubMed/NCBI | |
Beltz L, Moran R, Elsawy O, Sadler J and Jurgenson J: The effects of telomerase inhibitors on lymphocyte function. Anticancer Res. 19:3205–3211. 1999. | |
Multani AS, Furlong C and Pathak S: Reduction of telomeric signals in murine melanoma and human breast cancer cell lines treated with 3′-azido-2′-3′-dideoxythymidine. Int J Oncol. 13:923–925. 1998.PubMed/NCBI | |
Melana SM, Holland JF and Pogo BG: Inhibition of cell growth and telomerase activity of breast cancer cells in vitro by 3′-azido-3′-deoxythymidine. Clin Cancer Res. 4:693–696. 1998.PubMed/NCBI | |
Jeng KS, Sheen IS and Jeng WJ: Azidothymidine treatment of hepatocellular carcinoma in rats: An in vivo study of telomerase inhibition. Hepatogastroenterology. 58:2091–2096. 2011. View Article : Google Scholar : PubMed/NCBI | |
Murakami J, Nagai N, Shigemasa K and Ohama K: Inhibition of telomerase activity and cell proliferation by a reverse tran-scriptase inhibitor in gynaecological cancer cell lines. Eur J Cancer. 35:1027–1034. 1999. View Article : Google Scholar : PubMed/NCBI | |
Johnston JS, Johnson A, Gan Y, Wientjes MG and Au JL: Synergy between 3′-azido-3′-deoxythymidine and paclitaxel in human pharynx FaDu cells. Pharm Res. 20:957–961. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brown T, Sigurdson E, Rogatko A and Broccoli D: Telomerase inhibition using azidothymidine in the HT-29 colon cancer cell line. Ann Surg Oncol. 10:910–915. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tejera AM, Alonso DF, Gomez DE and Olivero OA: Chronic in vitro exposure to 3′-azido-2′,3′-dideoxythymidine induces senescence and apoptosis and reduces tumorigenicity of metastatic mouse mammary tumor cells. Breast Cancer Res Treat. 65:93–99. 2001. View Article : Google Scholar : PubMed/NCBI | |
Faraj A, El Alaoui AM, Gosselin G, Imbach JL, Morrow C and Sommadossi JP: Effects of beta-L-3′-azido-3′-deoxythymidine 5′-triphosphate on host and viral DNA polymerases. Antiviral Res. 47:97–102. 2000. View Article : Google Scholar : PubMed/NCBI | |
Armando RG, Gomez DM and Gomez DE: AZT exerts its antitumoral effect by telomeric and non-telomeric effects in a mammary adenocarcinoma model. Oncol Rep. 36:2731–2736. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gomez DL, Farina HG and Gomez DE: Telomerase regulation: A key to inhibition? (Review). Int J Oncol. 43:1351–1356. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song L, Ding S, Ge Z, Zhu X, Qiu C, Wang Y, Lai E, Yang W, Sun Y, Chow SA and Yu L: Nucleoside/nucleotide reverse transcriptase inhibitors attenuate angiogenesis and lymphangiogenesis by impairing receptor tyrosine kinases signalling in endothelial cells. Br J Pharmacol. 175:1241–1259. 2018. View Article : Google Scholar : | |
Datta A, Bellon M, Sinha-Datta U, Bazarbachi A, Lepelletier Y, Canioni D, Waldmann TA, Hermine O and Nicot C: Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood. 108:1021–1029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Posner MR, Darnowski JW, Weitberg AB, Dudley MN, Corvese D, Cummings FJ, Clark J, Murray C, Clendennin N, Bigley J, et al: High-dose intravenous zidovudine with 5-fluorouracil and leucovorin. A phase I trial Cancer. 70:2929–2934. 1992. | |
Marchbanks K, Dudley MN, Posner MR and Darnowski J: Pharmacokinetics and pharmacodynamics of high-dose zidovu-dine administered as a continuous infusion in patients with cancer. Pharmacotherapy. 15:451–457. 1995.PubMed/NCBI | |
Clark J, Sikov W, Cummings F, Browne M, Akerley W, Wanebo H, Weitberg A, Kennedy T, Cole B, Bigley J, et al: Phase II study of 5-fluoruracil leucovorin and azidothymidine in patients with metastatic colorectal cancer. J Cancer Res Clin Oncol. 122:554–558. 1996. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Loehrer PJ, Gonin R, Weber G, Ansari R, Pletcher W, McClean J, Spiridonidis CH and Mortimer J: A phase II study of weekly oral methotrexate and zidovudine (AZT) in advanced adenocarcinoma of the pancreas and hepatocellular carcinoma. Invest New Drugs. 14:207–212. 1996. View Article : Google Scholar : PubMed/NCBI | |
Falcone A, Lencioni M, Brunetti I, Pfanner E, Allegrini G, Antonuzzo A, Andreuccetti M, Malvaldi G, Danesi R, Del Tacca M and Conte PF: Maximum tolerable doses of intravenous zidovudine in combination with 5-fluorouracil and leucovorin in metastatic colorectal cancer patients. Clinical evidence of significant antitumor activity and enhancement of zidovudine-induced DNA single strand breaks in peripheral nuclear blood cells. Ann Oncol. 8:539–545. 1997. View Article : Google Scholar : PubMed/NCBI | |
Saraswati AP, Relitti N, Brindisi M, Gemma S, Zisterer D, Butini S and Campiani G: Raising the bar in anticancer therapy: Recent advances in, and perspectives on, telomerase inhibitors. Drug Discov Today. 24:1370–1388. 2019. View Article : Google Scholar : PubMed/NCBI |