1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu Y, Zhang Z, Cenciarini ME, Proietti CJ,
Amasino M, Hong T, Yang M, Liao Y, Chiang HC, Kaklamani VG, et al:
Tamoxifen resistance in breast cancer is regulated by the
EZH2-ERα-GREB1 transcriptional axis. Cancer Res. 78:671–684. 2018.
View Article : Google Scholar
|
3
|
Kumar P and Aggarwal R: An overview of
triple-negative breast cancer. Arch Gynecol Obstet. 293:247–269.
2016. View Article : Google Scholar
|
4
|
Liu F, Zhuang L, Wu R and Li D: miR-365
inhibits cell invasion and migration of triple negative breast
cancer through ADAM10. J BUON. 24:1905–1912. 2019.PubMed/NCBI
|
5
|
Denkert C, Liedtke C, Tutt A and von
Minckwitz G: Molecular alterations in triple-negative breast
cancer-the road to new treatment strategies. Lancet. 389:2430–2442.
2017. View Article : Google Scholar
|
6
|
Yu Y, Wang J, Khaled W, Burke S, Li P,
Chen X, Yang W, Jenkins NA, Copeland NG, Zhang S and Liu P: Bcl11a
is essential for lymphoid development and negatively regulates p53.
J Exp Med. 209:2467–2483. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakamura T, Yamazaki Y, Saiki Y, Moriyama
M, Largaespada DA, Jenkins NA and Copeland NG: Evi9 encodes a novel
zinc finger protein that physically interacts with BCL6, a known
human B-cell proto-oncogene product. Mol Cell Biol. 20:3178–3186.
2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen F, Luo N, Hu Y, Li X and Zhang K:
MiR-137 suppresses triple-negative breast cancer stemness and
tumorigenesis by perturbing BCL11A-DNMT1 interaction. Cell Physiol
Biochem. 47:2147–2158. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lazarus KA, Hadi F, Zambon E, Bach K,
Santolla MF, Watson JK, Correia LL, Das M, Ugur R, Pensa S, et al:
BCL11A interacts with SOX2 to control the expression of epigenetic
regulators in lung squamous carcinoma. Nat Commun. 9:33272018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Boumahdi S, Driessens G, Lapouge G, Rorive
S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E,
et al: SOX2 controls tumour initiation and cancer stem-cell
functions in squamous-cell carcinoma. Nature. 511:246–250. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Mamun MA, Mannoor K, Cao J, Qadri F and
Song X: SOX2 in cancer stemness: Tumor malignancy and therapeutic
potentials. J Mol Cell Biol. Dec 5–2018.Epub ahead of print.
PubMed/NCBI
|
12
|
Tong B, Zeng J, Wu Y and Xiong W: Enhanced
SOX2 expression in retinoblastoma tissues and peripheral blood is
associated with the clinicopathological characteristics of the
disease. Oncol Lett. 9:1244–1248. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nomura N, Sasamoto S, Ishii S, Date T,
Matsui M and Ishizaki R: Isolation of human cDNA clones of ski and
the ski-related gene, sno. Nucleic Acids Res. 17:5489–5500. 1989.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jahchan NS and Luo K: SnoN in mammalian
development, function and diseases. Curr Opin Pharmacol.
10:670–675. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shinozuka E, Miyashita M, Mizuguchi Y,
Akagi I, Kikuchi K, Makino H, Matsutani T, Hagiwara N, Nomura T,
Uchida E and Takizawa T: SnoN/SKIL modulates proliferation through
control of hsa-miR-720 transcription in esophageal cancer cells.
Biochem Biophys Res Commun. 430:101–106. 2013. View Article : Google Scholar
|
16
|
Kodigepalli KM, Anur P, Spellman P, Sims
PJ and Nanjundan M: Phospholipid Scramblase 1, an
interferon-regulated gene located at 3q23, is regulated by
SnoN/SkiL in ovarian cancer cells. Mol Cancer. 12:322013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Javelaud D, van Kempen L, Alexaki VI, Le
Scolan E, Luo K and Mauviel A: Efficient TGF‑β/SMAD signaling in
human melanoma cells associated with high c-SKI/SnoN expression.
Mol Cancer. 10:22011. View Article : Google Scholar
|
18
|
Makino Y, Yoon JH, Bae E, Kato M, Miyazawa
K, Ohira T, Ikeda N, Kuroda M and Mamura M: Repression of Smad3 by
Stat3 and c‑Ski/SnoN induces gefitinib resistance in lung
adeno-carcinoma. Biochem Biophys Res Commun. 484:269–277. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Sengupta S, Jana S, Biswas S, Mandal PK
and Bhattacharyya A: Cooperative involvement of NFAT and SnoN
mediates transforming growth factor-β (TGF-β) induced EMT in
metastatic breast cancer (MDA-MB 231) cells. Clin Exp Metastasis.
30:1019–1031. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu Q, Krakowski AR, Dunham EE, Wang L,
Bandyopadhyay A, Berdeaux R, Martin GS, Sun L and Luo K: Dual role
of SnoN in mammalian tumorigenesis. Mol Cell Biol. 27:324–339.
2007. View Article : Google Scholar :
|
21
|
Band AM and Laiho M: SnoN oncoprotein
enhances estrogen receptor-α transcriptional activity. Cell Signal.
24:922–930. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhu Q, Le Scolan E, Jahchan N, Ji X, Xu A
and Luo K: SnoN antagonizes the hippo kinase complex to promote TAZ
signaling during breast carcinogenesis. Dev Cell. 37:399–412. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Janse van Rensburg HJ, Azad T, Ling M, Hao
Y, Snetsinger B, Khanal P, Minassian LM, Graham CH, Rauh MJ and
Yang X: The hippo pathway component TAZ promotes immune evasion in
human cancer through PD-L1. Cancer Res. 78:1457–1470. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Harvey KF, Zhang X and Thomas DM: The
Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Tian Y, Fu X, Li Q, Wang Y, Fan D, Zhou Q,
Kuang W and Shen L: MicroRNA181 serves an oncogenic role in breast
cancer via the inhibition of SPRY4. Mol Med Rep. 18:5603–5613.
2018.PubMed/NCBI
|
27
|
Krutzfeldt J: Strategies to use microRNAs
as therapeutic targets. Best Pract Res Clin Endocrinol Metab.
30:551–561. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Peng G, Liao Y and Shen C: miRNA-429
inhibits astrocytoma proliferation and invasion by targeting BMI1.
Pathol Oncol Res. 23:369–376. 2017. View Article : Google Scholar
|
29
|
Deng Z, Wang Y, Fang X, Yan F, Pan H, Gu
L, Xie C, Li Y, Hu Y, Cao Y and Tang Z: Research on miRNA-195 and
target gene CDK6 in oral verrucous carcinoma. Cancer Gene Ther.
24:282–288. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang PS, Chou CH, Lin CH, Yao YC, Cheng
HC, Li HY, Chuang YC, Yang CN, Ger LP, Chen YC, et al: A novel long
non-coding RNA linc-ZNF469-3 promotes lung metastasis through
miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene.
37:4662–4678. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang X and Yin YM: Updates of chinese
society of clinical oncology (CSCO) guideline for breast cancer in
2018. Zhonghua Yi Xue Za Zhi. 98:1213–1217. 2018.In Chinese.
PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Shah MY and Calin GA: MicroRNAs as
therapeutic targets in human cancers. Wiley Interdiscip Rev RNA.
5:537–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
D'Ippolito E and Iorio MV: MicroRNAs and
triple negative breast cancer. Int J Mol Sci. 14:22202–22220. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH,
Chang YC, Lin WC, Shen CY, Huang CS, Hsieh FJ, et al: Deregulated
microRNAs in triple-negative breast cancer revealed by deep
sequencing. Mol Cancer. 14:362015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang X, Lu X, Geng Z, Yang G and Shi Y:
LncRNA PTCSC3/miR-574-5p governs cell proliferation and migration
of papillary thyroid carcinoma via wnt/β-catenin signaling. J Cell
Biochem. 118:4745–4752. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lai Z, Lin P, Weng X, Su J, Chen Y, He Y,
Wu G, Wang J, Yu Y and Zhang L: MicroRNA-574-5p promotes cell
growth of vascular smooth muscle cells in the progression of
coronary artery disease. Biomed Pharmacother. 97:162–167. 2018.
View Article : Google Scholar
|
38
|
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X,
Li G and Sang N: NF-κB-regulated microRNA-574-5p underlies synaptic
and cognitive impairment in response to atmospheric PM2.5
aspiration. Part Fibre Toxicol. 14:342017. View Article : Google Scholar
|
39
|
Khaled WT, Choon Lee S, Stingl J, Chen X,
Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, et al: BCL11A
is a triple-negative breast cancer gene with critical functions in
stem and progenitor cells. Nat Commun. 6:59872015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Errico A: Genetics: BCL11A-targeting
triple-negative breast cancer? Nat Rev Clin Oncol. 12:1272015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu DW, Zhang JH, Liu FX, Wang XT, Pan SK,
Jiang DK, Zhao ZH and Liu ZS: Silencing of long noncoding RNA PVT1
inhibits podocyte damage and apoptosis in diabetic nephropathy by
upregulating FOXA1. Exp Mol Med. 51:882019. View Article : Google Scholar :
|