1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
2
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
zur Hausen H: Papillomaviruses in the
causation of human cancers-a brief historical account. Virology.
384:260–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bansal A, Singh MP and Rai B: Human
papillomavirus-associated cancers: A growing global problem. Int J
Appl Basic Med Res. 6:84–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Doorbar J: Latent papillomavirus
infections and their regulation. Curr Opin Virol. 3:416–421. 2013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Schiffman M, Doorbar J, Wentzensen N, de
Sanjosé S, Fakhry C, Monk BJ, Stanley MA and Franceschi S:
Carcinogenic human papillomavirus infection. Nat Rev Dis Primers.
2:160862016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Durst M, Kleinheinz A, Hotz M and Gissmann
L: The physical state of human papillomavirus type 16 DNA in benign
and malignant genital tumours. J Gen Virol. 66:1515–1522. 1985.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lehn H, Villa LL, Marziona F, Hilgarth M,
Hillemans HG and Sauer G: Physical state and biological activity of
human papillomavirus genomes in precancerous lesions of the female
genital tract. J Gen Virol. 69:187–196. 1988. View Article : Google Scholar : PubMed/NCBI
|
10
|
Badal S, Badal V, Calleja-Macias IE,
Kalantari M, Chuang LS, Li BF and Bernard HU: The human
papillomavirus-18 genome is efficiently targeted by cellular DNA
methylation. Virology. 324:483–492. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fernandez AF, Rosales C, Lopez-Nieva P,
Graña O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A,
Fraga MF, et al: The dynamic DNA methylomes of double-stranded DNA
viruses associated with human cancer. Genome Res. 19:438–451. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kalantari M, Lee D, Calleja-Macias IE,
Lambert PF and Bernard HU: Effects of cellular differentiation,
chromosomal integration and 5-aza-2'-deoxycytidine treatment on
human papillomavirus-16 DNA methylation in cultured cell lines.
Virology. 374:292–303. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boyer SN, Wazer DE and Band V: E7 protein
of human papilloma virus-16 induces degradation of retinoblastoma
protein through the ubiquitin-proteasome pathway. Cancer Res.
56:4620–4624. 1996.PubMed/NCBI
|
14
|
Munger K, Phelps WC, Bubb V, Howley PM and
Schlegel R: The E6 and E7 genes of the human papillomavirus type 16
together are necessary and sufficient for transformation of primary
human keratinocytes. J Virol. 63:4417–4421. 1989. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brehm A, Nielsen SJ, Miska EA, McCance DJ,
Reid JL, Bannister AJ and Kouzarides T: The E7 oncoprotein
associates with Mi2 and histone deacetylase activity to promote
cell growth. EMBO J. 18:2449–2458. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Burgers WA, Blanchon L, Pradhan S, de
Launoit Y, Kouzarides T and Fuks F: Viral oncoproteins target the
DNA methyltransfer-ases. Oncogene. 26:1650–1655. 2007. View Article : Google Scholar
|
17
|
Longworth MS and Laimins LA: The binding
of histone deacety-lases and the integrity of zinc finger‑like
motifs of the E7 protein are essential for the life cycle of human
papillomavirus type 31. J Virol. 78:3533–3541. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y, LeRoy G, Seelig HP, Lane WS and
Reinberg D: The dermatomyositis‑specific autoantigen Mi2 is a
component of a complex containing histone deacetylase and
nucleosome remod-eling activities. Cell. 95:279–289. 1998.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li H, Ou X, Xiong J and Wang T: HPV16E7
mediates HADC chromatin repression and downregulation of MHC class
I genes in HPV16 tumorigenic cells through interaction with an MHC
class I promoter. Biochem Biophys Res Commun. 349:1315–1321. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Georgopoulos NT, Proffitt JL and Blair GE:
Transcriptional regulation of the major histocompatibility complex
(MHC) class I heavy chain, TAP1 and LMP2 genes by the human
papilloma-virus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene.
19:4930–4935. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Milutin Gasperov N, Sabol I, Planinić P,
Grubišić G, Fistonić I, Ćorušić A and Grce M: Methylated host cell
gene promoters and human papillomavirus type 16 and 18 predicting
cervical lesions and cancer. PLoS One. 10:e01294522015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu J, Lian Z, Han S, Waye MM, Wang H, Wu
MC, Wu K, Ding J, Arbuthnot P, Kew M, et al: Downregulation of
E-cadherin by hepatitis B virus X antigen in hepatocellullar
carcinoma. Oncogene. 25:1008–1017. 2006. View Article : Google Scholar
|
23
|
McLaughlin-Drubin ME and Munger K: Viruses
associated with human cancer. Biochim Biophys Acta. 1782:127–150.
2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsai CN, Tsai CL, Tse KP, Chang HY and
Chang YS: The Epstein-Barr virus oncogene product, latent membrane
protein 1, induces the downregulation of E-cadherin gene expression
via activation of DNA methyltransferases. Proc Natl Acad Sci USA.
99:10084–10089. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Caberg JH, Hubert PM, Begon DY, Herfs MF,
Roncarati PJ, Boniver JJ and Delvenne PO: Silencing of E7 oncogene
restores functional E-cadherin expression in human papillomavirus
16-transformed keratinocytes. Carcinogenesis. 29:1441–1447. 2008.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Laurson J, Khan S, Chung R, Cross K and
Raj K: Epigenetic repression of E-cadherin by human papillomavirus
16 E7 protein. Carcinogenesis. 31:918–926. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cano A, Perez-Moreno MA, Rodrigo I,
Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA: The
transcription factor snail controls epithelial-mesenchymal
transitions by repressing E-cadherin expression. Nat Cell Biol.
2:76–83. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pattillo RA, Hussa RO, Story MT, Ruckert
AC, Shalaby MR and Mattingly RF: Tumor antigen and human chorionic
gonadotropin in CaSki cells: A new epidermoid cervical cancer cell
line. Science. 196:1456–1458. 1977. View Article : Google Scholar : PubMed/NCBI
|
29
|
Friedl F, Kimura I, Osato T and Ito Y:
Studies on a new human cell line (SiHa) derived from carcinoma of
uterus. I Its establishment and morphology. Proc Soc Exp Biol Med.
135:543–545. 1970. View Article : Google Scholar : PubMed/NCBI
|
30
|
Diao MK, Liu CY, Liu HW, Li JT, Li F,
Mehryar MM, Wang YJ, Zhan SB, Zhou YB, Zhong RG and Zeng Y:
Integrated HPV genomes tend to integrate in gene desert areas in
the CaSki, HeLa, and SiHa cervical cancer cell lines. Life Sci.
127:46–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yee C, Krishnan-Hewlett I, Baker CC,
Schlegel R and Howley PM: Presence and expression of human
papillomavirus sequences in human cervical carcinoma cell lines. Am
J Pathol. 119:361–366. 1985.PubMed/NCBI
|
32
|
Schneider-Gädicke A and Schwarz E:
Different human cervical carcinoma cell lines show similar
transcription patterns of human papillomavirus type 18 early genes.
EMBO J. 5:2285–2292. 1986. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pater MM and Pater A: Human papillomavirus
types 16 and 18 sequences in carcinoma cell lines of the cervix.
Virology. 145:313–318. 1985. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pater MM and Pater A: Expression of human
papillomavirus types 16 and 18 DNA sequences in cervical carcinoma
cell lines. J Med Virol. 26:185–195. 1988. View Article : Google Scholar : PubMed/NCBI
|
35
|
Spence RP, Murray A, Banks L, Kelland LR
and Crawford L: Analysis of human papillomavirus sequences in cell
lines recently derived from cervical cancers. Cancer Res.
48:324–328. 1988.PubMed/NCBI
|
36
|
Meissner JD: Nucleotide sequences and
further characterization of human papillomavirus DNA present in the
CaSki, SiHa and HeLa cervical carcinoma cell lines. J Gen Virol.
80:1725–1733. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
De la Cruz-Hernandez E, Garcia-Carranca A,
Mohar-Betancourt A, Dueñas-González A, Contreras-Paredes A,
Pérez-Cardenas E, Herrera-Goepfert R and Lizano-Soberón M:
Differential splicing of E6 within human papillomavirus type 18
variants and functional consequences. J Gen Virol. 86:2459–2468.
2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Vazquez-Vega S, Sanchez-Suarez LP,
Andrade-Cruz R, Castellanos-Juarez E, Contreras-Paredes A,
Lizano-Soberon M, Garcia-Carranca A and Benitez Bribiesca L:
Regulation of p14ARF expression by HPV-18 E6 variants. J Med Virol.
85:1215–1221. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vazquez-Vega S, Sanchez-Suarez LP,
Contreras-Paredes A, Castellanos-Juárez E, Peñarroja-Flores R,
Lizano-Soberón M, Andrade-Cruz R, García-Carrancá A and
Benítez-Bribiesca L: Nuclear co-expression of p14ARF and p16INK4A
in uterine cervical cancer-derived cell lines containing HPV.
Cancer Biomark. 8:341–350. 2011. View Article : Google Scholar
|
40
|
Gutier rez J, Ga rcia-Villa E,
Ocadiz-Delgado R, Cortés-Malagón EM, Vázquez J, Roman-Rosales A,
Alvarez-Rios E, Celik H, Romano MC, Üren A, et al: Human
papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid
receptor-beta expression in cervical cancer cell lines and K14E7
transgenic mice. Mol Cell Biochem. 408:261–272. 2015. View Article : Google Scholar
|
41
|
Momparler RL: Epigenetic therapy of cancer
with 5-aza-2'-deox-ycytidine (decitabine). Semin Oncol. 32:443–451.
2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vigushin DM, Ali S, Pace PE, Mirsaidi N,
Ito K, Adcock I and Coombes RC: Trichostatin A is a histone
deacetylase inhibitor with potent antitumor activity against breast
cancer in vivo. Clin Cancer Res. 7:971–976. 2001.PubMed/NCBI
|
43
|
Jiang M and Milner J: Selective silencing
of viral gene expression in HPV-positive human cervical carcinoma
cells treated with siRNA, a primer of RNA interference. Oncogene.
21:6041–6048. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lea JS, Sunaga N, Sato M, Kalahasti G,
Miller DS, Minna JD and Muller CY: Silencing of HPV 18 oncoproteins
with RNA interference causes growth inhibition of cervical cancer
cells. Reprod Sci. 14:20–28. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sledz CA, Holko M, de Veer MJ, Silverman
RH and Williams BR: Activation of the interferon system by
short-interfering RNAs. Nat Cell Biol. 5:834–839. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Makpol S, Zainuddin A and Chua KH: GAPDH
expression as a measurement of transfection efficiency for p16
INK4a gene silencing (siRNA) in senescent human diploid
fibroblasts. Am J Mol Biol. 2:390–397. 2012. View Article : Google Scholar
|
47
|
Han H: RNA interference to knock down gene
expression. Methods Mol Biol. 1706:293–302. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Borawski J, Lindeman A, Buxton F, Labow M
and Gaither LA: Optimization procedure for small interfering RNA
transfection in a 384-well format. J Biomol Screen. 12:546–559.
2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Peter Hahn JD, Wolfgang Bielke and Kang
Jie: Patent: EP2240582 B1-Positive controls for expression
modulating experiments. European Patent Office. October
23–2013.
|
50
|
Cheng A, Magdaleno S and Vlassov AV:
Optimization of trans-fection conditions and analysis of siRNA
potency using real-time PCR. Methods Mol Biol. 764:199–213. 2011.
View Article : Google Scholar
|
51
|
Badal V, Chuang LS, Tan EH, Badal S, Villa
LL, Wheeler CM, Li BF and Bernard HU: CpG methylation of human
papilloma-virus type 16 DNA in cervical cancer cell lines and in
clinical specimens: Genomic hypomethylation correlates with
carcinogenic progression. J Virol. 77:6227–6234. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kalantari M, Calleja-Macias IE, Tewari D,
Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ and Bernard HU:
Conserved methylation patterns of human papillomavirus type 16 DNA
in asymptomatic infection and cervical neoplasia. J Virol.
78:12762–12772. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hoffmann I, Hilger M and Mueller O: Homo
sapiens promoter of E-cadherin from HEK293 cells.
Max-Planck-Institut fuer Molekulare Physiologie; Dortmund: 2006
|
54
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
55
|
Peinado H, Portillo F and Cano A:
Transcriptional regulation of cadherins during development and
carcinogenesis. Int J Dev Biol. 48:365–375. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Moreno-Bueno G, Cubillo E, Sarrio D,
Peinado H, Rodríguez-Pinilla SM, Villa S, Bolós V, Jordá M, Fabra
A, Portillo F, et al: Genetic profiling of epithelial cells
expressing E-cadherin repressors reveals a distinct role for Snail,
Slug, and E47 factors in epithelial-mesenchymal transition. Cancer
Res. 66:9543–9556. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Peinado H, Olmeda D and Cano A: Snail, Zeb
and bHLH factors in tumour progression: An alliance against the
epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Cameron EE, Bachman KE, Myöhänen S, Herman
JG and Baylin SB: Synergy of demethylation and histone deacetylase
inhibition in the re-expression of genes silenced in cancer. Nat
Genet. 21:103–107. 1999. View
Article : Google Scholar : PubMed/NCBI
|
59
|
Ou JN, Torrisani J, Unterberger A,
Provençal N, Shikimi K, Karimi M, Ekström TJ and Szyf M: Histone
deacetylase inhibitor Trichostatin A induces global and
gene‑specific DNA demeth-ylation in human cancer cell lines.
Biochem Pharmacol. 73:1297–1307. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Meng F, Sun G, Zhong M, Yu Y and Brewer
MA: Anticancer efficacy of cisplatin and trichostatin A or
5‑aza‑2'‑deoxycytidine on ovarian cancer. Br J Cancer. 108:579–586.
2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Liu YN, Lee WW, Wang CY, Chao TH, Chen Y
and Chen JH: Regulatory mechanisms controlling human E-cadherin
gene expression. Oncogene. 24:8277–8290. 2005. View Article : Google Scholar : PubMed/NCBI
|
62
|
Chen Y, Wang K, Qian CN and Leach R: DNA
methylation is associated with transcription of Snail and Slug
genes. Biochem Biophys Res Commun. 430:1083–1090. 2013. View Article : Google Scholar :
|
63
|
Savagner P, Kusewitt DF, Carver EA,
Magnino F, Choi C, Gridley T and Hudson LG: Developmental
transcription factor slug is required for effective
re-epithelialization by adult kerati-nocytes. J Cell Physiol.
202:858–866. 2005. View Article : Google Scholar
|
64
|
Arzumanyan A, Friedman T, Kotei E, Ng IO,
Lian Z and Feitelson MA: Epigenetic repression of E-cadherin
expression by hepatitis B virus x antigen in liver cancer.
Oncogene. 31:563–572. 2012. View Article : Google Scholar
|
65
|
Horikawa T, Yoshizaki T, Kondo S, Furukawa
M, Kaizaki Y and Pagano JS: Epstein-Barr Virus latent membrane
protein 1 induces Snail and epithelial-mesenchymal transition in
metastatic nasopharyngeal carcinoma. Br J Cancer. 104:1160–1167.
2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Liu H, Xu L, He H, Zhu Y, Liu J, Wang S,
Chen L, Wu Q, Xu J and Gu J: Hepatitis B virus X protein promotes
hepatoma cell invasion and metastasis by stabilizing Snail protein.
Cancer Sci. 103:2072–2081. 2012. View Article : Google Scholar : PubMed/NCBI
|
67
|
Nie D, Shan X, Nie L, Duan Y, Chen Z, Yang
Y, Li Z, Tian L, Gao Q, Shan Y and Tang N: Hepatitis C virus core
protein interacts with Snail and histone deacetylases to promote
the metastasis of hepatocellular carcinoma. Oncogene. 35:3626–3635.
2016. View Article : Google Scholar
|
68
|
Liu K, Tang Z, Huang A, Chen P, Liu P,
Yang J, Lu W, Liao J, Sun Y, Wen S, et al:
Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and
metastasis through upregulation of SNAIL expression. Int J Oncol.
50:252–262. 2017. View Article : Google Scholar
|
69
|
Liu Y, Xu Y, Ma H, Wang B, Xu L, Zhang H,
Song X, Gao L, Liang X and Ma C: Hepatitis B virus X protein
amplifies TGF‑β promotion on HCC motility through down-regulating
PPM1a. Oncotarget. 7:33125–33135. 2016. View Article : Google Scholar : PubMed/NCBI
|
70
|
Park GB, Kim D, Kim YS, Kim S, Lee HK,
Yang JW and Hur DY: The Epstein-Barr virus causes
epithelial-mesenchymal transition in human corneal epithelial cells
via Syk/src and Akt/Erk signaling pathways. Invest Ophthalmol Vis
Sci. 55:1770–1779. 2014. View Article : Google Scholar : PubMed/NCBI
|
71
|
Sides MD, Klingsberg RC, Shan B, Gordon
KA, Nguyen HT, Lin Z, Takahashi T, Flemington EK and Lasky JA: The
Epstein-Barr virus latent membrane protein 1 and transforming
growth factor-β1 synergistically induce epithelial–mesenchymal
transition in lung epithelial cells. Am J Respir Cell Mol Biol.
44:852–862. 2011. View Article : Google Scholar
|
72
|
Taniguchi H, Kato N, Otsuka M, Goto T,
Yoshida H, Shiratori Y and Omata M: Hepatitis C virus core protein
upregulates transforming growth factor-beta 1 transcription. J Med
Virol. 72:52–59. 2004. View Article : Google Scholar
|
73
|
Peinado H, Quintanilla M and Cano A:
Transforming growth factor beta-1 induces snail transcription
factor in epithelial cell lines: Mechanisms for epithelial
mesenchymal transitions. J Biol Chem. 278:21113–21123. 2003.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Surviladze Z, Sterk RT, DeHaro SA and
Ozbun MA: Cellular entry of human papillomavirus type 16 involves
activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway
and inhibition of autophagy. J Virol. 87:2508–2517. 2013.
View Article : Google Scholar :
|
75
|
Menges CW, Baglia LA, Lapoint R and
McCance DJ: Human papillomavirus type 16 E7 up-regulates AKT
activity through the retinoblastoma protein. Cancer Res.
66:5555–5559. 2006. View Article : Google Scholar : PubMed/NCBI
|
76
|
Yi JY, Hur KC, Lee E, Jin YJ, Arteaga CL
and Son YS: TGFbeta1-mediated epithelial to mesenchymal transition
is accompanied by invasion in the SiHa cell line. Eur J Cell Biol.
81:457–468. 2002. View Article : Google Scholar : PubMed/NCBI
|