1
|
Sciubba JJ and Goldenberg D: Oral
complications of radiotherapy. Lancet Oncol. 7:175–183. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chrcanovic BR, Reher P, Sousa AA and
Harris M: Osteoradionecrosis of the jaws - a current overview -
part 1: Physiopathology and risk and predisposing factors. Oral
Maxillofac Surg. 14:3–16. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
McGowan K, Ivanovski S and Acton C:
Osteonecrosis of the jaws: A 14-year retrospective survey of
hospital admissions. Aust Dent J. 63:202–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chronopoulos A, Zarra T, Ehrenfeld M and
Otto S: Osteoradionecrosis of the jaws: Definition, epidemiology,
staging and clinical and radiological findings. A concise review
Int Dent J. 68:22–30. 2018. View Article : Google Scholar
|
5
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Marx RE: Osteoradionecrosis: A new concept
of its pathophysiology. J Oral Maxillofac Surg. 41:283–288. 1983.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Madrid C, Abarca M and Bouferrache K:
Osteoradionecrosis: An update. Oral Oncol. 46:471–474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Poort LJ, Ludlage JH, Lie N, Böckmann RA,
Odekerken JC, Hoebers FJ and Kessler PA: The histological and
histomorphometric changes in the mandible after radiotherapy: An
animal model. J Craniomaxillofac Surg. 45:716–721. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Marx RE and Johnson RP: Studies in the
radiobiology of osteoradionecrosis and their clinical significance.
Oral Surg Oral Med Oral Pathol. 64:379–390. 1987. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu J, Zheng Z, Fang D, Gao R, Liu Y, Fan
ZP, Zhang CM and Wang SL: Early-stage pathogenic sequence of jaw
osteoradione-crosis in vivo. J Dent Res. 91:702–708. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu J, Zheng Z, Fang D, Gao R, Liu Y, Fan
Z, Zhang C, Shi S and Wang S: Mesenchymal stromal cell-based
treatment of jaw osteoradionecrosis in Swine. Cell Transplant.
21:1679–1686. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Caplan AI: Mesenchymal stem cells. J
Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mazur L, Augustynek A, Halicka HD and
Deptała A: Induction of apoptosis in bone marrow cells after
treatment of mice with WR-2721 and gamma-rays: Relationship to the
cell cycle. Cell Biol Toxicol. 19:13–27. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao X, Wu X, Frassica D, Yu B, Pang L,
Xian L, Wan M, Lei W, Armour M, Tryggestad E, et al: Irradiation
induces bone injury by damaging bone marrow microenvironment for
stem cells. Proc Natl Acad Sci USA. 108:1609–1614. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rehman AA, Zaman M, Zia MK, Ahsan H, Khan
RH and Khan FH: Conformational behavior of alpha-2-macroglobulin:
Aggregation and inhibition induced by TFE. Int J Biol Macromol.
104:539–546. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen X, Kong X, Zhang Z, Chen W, Chen J,
Li H, Cao W, Ge Y and Fang S: Alpha-2-macroglobulin as a
radioprotective agent: A review. Chin J Cancer Res. 26:611–621.
2014.PubMed/NCBI
|
17
|
Uskoković A, Dinić S, Mihailović M,
Grigorov I, Ivanović-Matić S, Bogojević D, Grdović N, Arambasić J,
Vidaković M, Martinović V, et al: STAT3/NFkappaB interplay in the
regulation of alpha2-macroglobulin gene expression during rat liver
development and the acute phase response. IUBMB Life. 59:170–178.
2007. View Article : Google Scholar
|
18
|
Bogojević D, Poznanović G, Grdović N,
Grigorov I, Vidaković M, Dinić S and Mihailović M: Administration
of rat acute-phase protein α(2)-macroglobulin before total-body
irradiation initiates cytoprotective mechanisms in the liver.
Radiat Environ Biophys. 50:167–179. 2011. View Article : Google Scholar
|
19
|
Mirjana M, Goran P, Nevena G, Melita V,
Svetlana D, Ilijana G and Desanka B: The rat acute-phase protein
α2-macroglobulin plays a central role in amifostine-mediated
radioprotection. J Radiol Prot. 30:567–583. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y, Cao W, Kong X, Li J, Chen X, Ge Y,
Zhong W and Fang S: Protective effects of α2 macroglobulin on human
bone marrow mesenchymal stem cells in radiation injury. Mol Med
Rep. 18:4219–4228. 2018.PubMed/NCBI
|
21
|
Moroni L and Fornasari PM: Human
mesenchymal stem cells: A bank perspective on the isolation,
characterization and potential of alternative sources for the
regeneration of musculoskeletal tissues. J Cell Physiol.
228:680–687. 2013. View Article : Google Scholar
|
22
|
Baker N, Boyette LB and Tuan RS:
Characterization of bone marrow-derived mesenchymal stem cells in
aging. Bone. 70:37–47. 2015. View Article : Google Scholar
|
23
|
Wang Y, Zhu G, Wang J and Chen J:
Irradiation alters the differentiation potential of bone marrow
mesenchymal stem cells. Mol Med Rep. 13:213–223. 2016. View Article : Google Scholar :
|
24
|
Li J, Kong XB, Chen XY, Zhong WZ, Chen JY,
Liu Y, Yin P and Fang SL: Protective role of α2-macroglobulin
against jaw osteoradionecrosis in a preclinical rat model. J Oral
Pathol Med. 48:166–173. 2019. View Article : Google Scholar
|
25
|
Bléry P, Espitalier F, Hays A, Crauste E,
Demarquay C, Pilet P, Sourice S, Guicheux J, Malard O, Benderitter
M, et al: Development of mandibular osteoradionecrosis in rats:
Importance of dental extraction. J Craniomaxillofac Surg.
43:1829–1836. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cohen M, Nishimura I, Tamplen M, Hokugo A,
Beumer J, Steinberg ML, Suh JD, Abemayor E and Nabili V: Animal
model of radiogenic bone damage to study mandibular
osteoradionecrosis. Am J Otolaryngol. 32:291–300. 2011. View Article : Google Scholar
|
27
|
Tchanque-Fossuo CN, Monson LA, Farberg AS,
Donneys A, Zehtabzadeh AJ, Razdolsky ER and Buchman SR:
Dose-response effect of human equivalent radiation in the murine
mandible: Part I. A histomorphometric assessment. Plast Reconstr
Surg. 128:114–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Spencer M, Yang L, Adu A, Finlin BS, Zhu
B, Shipp LR, Rasouli N, Peterson CA and Kern PA: Pioglitazone
treatment reduces adipose tissue inflammation through reduction of
mast cell and macrophage number and by improving vascularity. PLoS
One. 9:e1021902014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen
C, Karray S, Shi S and Jin Y: Osteoblast-induced osteoclast
apoptosis by fas ligand/FAS pathway is required for maintenance of
bone mass. Cell Death Differ. 22:1654–1664. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tan H, Qi J, Fan BY, Zhang J, Su FF and
Wang HT: MicroRNA-24-3p attenuates myocardial ischemia/reperfusion
injury by suppressing RIPK1 expression in mice. Cell Physiol
Biochem. 51:46–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen
CX: Exosomes derived from mesenchymal stem cells rescue myocardial
ischaemia/reper-fusion injury by inducing cardiomyocyte autophagy
via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017.
View Article : Google Scholar
|
32
|
Niehoff P, Springer IN, Açil Y, Lange A,
Marget M, Roldán JC, Köppe K, Warnke PH, Kimmig B and Wiltfang J:
HDR brachy-therapy irradiation of the jaw - as a new experimental
model of radiogenic bone damage. J Craniomaxillofac Surg.
36:203–209. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Monson LA, Jing XL, Donneys A, Farberg AS
and Buchman SR: Dose-response effect of human equivalent radiation
in the mandible. J Craniofac Surg. 24:1593–1598. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chang JW, Choi JW, Lee BH, Park JK, Shin
YS, Oh YT, Noh OK and Kim CH: Protective effects of Korean red
ginseng on radiation-induced oral mucositis in a preclinical rat
model. Nutr Cancer. 66:400–407. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Han G, Bian L, Li F, Cotrim A, Wang D, Lu
J, Deng Y, Bird G, Sowers A, Mitchell JB, et al: Preventive and
therapeutic effects of Smad7 on radiation-induced oral mucositis.
Nat Med. 19:421–428. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Maria OM, Shalaby M, Syme A, Eliopoulos N
and Muanza T: Adipose mesenchymal stromal cells minimize and repair
radiation-induced oral mucositis. Cytotherapy. 18:1129–1145. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sapir-Koren R and Livshits G: Osteocyte
control of bone remodeling: Is sclerostin a key molecular
coordinator of the balanced bone resorption-formation cycles?
Osteoporos Int. 25:2685–2700. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zong C, Cai B, Wen X, Alam S, Chen Y, Guo
Y, Liu Y and Tian L: The role of myofibroblasts in the development
of osteoradionecrosis in a newly established rabbit model. J
Craniomaxillofac Surg. 44:725–733. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Willey JS, Lloyd SA, Nelson GA and Bateman
TA: Ionizing radiation and none loss: Space exploration and
clinical therapy applications. Clin Rev Bone Miner Metab. 9:54–62.
2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sibonga JD: Spaceflight-induced bone loss:
Is there an osteoporosis risk? Curr Osteoporos Rep. 11:92–98. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Willey JS, Lloyd SA, Robbins ME, Bourland
JD, Smith-Sielicki H, Bowman LC, Norrdin RW and Bateman TA: Early
increase in osteoclast number in mice after whole-body irradiation
with 2Gy X rays. Radiat Res. 170:388–392. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Green DE, Adler BJ, Chan ME and Rubin CT:
Devastation of adult stem cell pools by irradiation precedes
collapse of trabecular bone quality and quantity. J Bone Miner Res.
27:749–759. 2012. View Article : Google Scholar
|
43
|
Sawajiri M, Mizoe J and Tanimoto K:
Changes in osteoclasts after irradiation with carbon ion particles.
Radiat Environ Biophys. 42:219–223. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sakuma S, Abe M, Kohda T and Fujimoto Y:
Hydrogen peroxide generated by xanthine/xanthine oxidase system
represses the proliferation of colorectal cancer cell line Caco-2.
J Clin Biochem Nutr. 56:15–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kasai H, Hayami H, Yamaizumi Z, Saitô H
and Nishimura S: Detection and identification of mutagens and
carcinogens as their adducts with guanosine derivatives. Nucleic
Acids Res. 12:2127–2136. 1984. View Article : Google Scholar : PubMed/NCBI
|
46
|
Valavanidis A, Vlachogianni T and Fiotakis
C: 8-hydroxy-2′-de-oxyguanosine (8-OHdG): A critical biomarker of
oxidative stress and carcinogenesis. J Environ Sci Health Part C
Environ Carcinog Ecotoxicol Rev. 27:120–139. 2009. View Article : Google Scholar
|
47
|
Ruiz-Perera LM, Schneider L, Windmöller
BA, Müller J, Greiner JF, Kaltschmidt C and Kaltschmidt B: NF-κB
p65 directs sex-specific neuroprotection in human neurons. Sci Rep.
8:160122018. View Article : Google Scholar
|
48
|
Ivanov VE, Usacheva AM, Chernikov AV,
Bruskov VI and Gudkov SV: Formation of long-lived reactive species
of blood serum proteins induced by low-intensity irradiation of
helium-neon laser and their involvement in the generation of
reactive oxygen species. J Photochem Photobiol B. 176:36–43. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Bautista E, Vergara P and Segovia J:
Iron-induced oxidative stress activates AKT and ERK1/2 and
decreases Dyrk1B and PRMT1 in neuroblastoma SH-SY5Y cells. J Trace
Elem Med Biol. 34:62–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lim SW, Jin L, Luo K, Jin J, Shin YJ, Hong
SY and Yang CW: Klotho enhances FoxO3-mediated manganese superoxide
dismutase expression by negatively regulating PI3K/AKT pathway
during tacrolimus-induced oxidative stress. Cell Death Dis.
8:e29722017. View Article : Google Scholar : PubMed/NCBI
|