1
|
Bashir MN: Epidemiology of prostate
cancer. Asian Pac J Cancer Prev. 16:5137–5141. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kazuto I: Prostate cancer in Asian men.
Nat Rev Urol. 11:197–212. 2014. View Article : Google Scholar
|
3
|
Zhu Y, Freedland SJ and Ye D: Prostate
cancer and prostatic diseases best of Asia, 2019: Challenges and
opportunities. Prostate Cancer Prostatic Dis. Dec 6–2019, Epub
ahead of print. PubMed/NCBI
|
4
|
Marusic G, Vojinov S and Levakov I:
Treatment of locally advanced prostatic cancer. Med Pregl.
63:689–695. 2010.In Serbian. View Article : Google Scholar
|
5
|
Noman MZ, Hasmim M, Messai Y, Terry S,
Kieda C, Janji B and Chouaib S: Hypoxia: A key player in antitumor
immune response. A review in the theme: Cellular responses to
hypoxia. Am J Physiol Cell Physiol. 309:C569–C579. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ramteke A, Ting H, Agarwal C, Mateen S,
Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R and Deep
G: Exosomes secreted under hypoxia enhance invasiveness and
stemness of prostate cancer cells by targeting adherens junction
molecules. Mol Carcinog. 54:554–565. 2015. View Article : Google Scholar
|
7
|
Deep G and Panigrahi GK: Hypoxia-induced
signaling promotes prostate cancer progression: Exosomes role as
messenger of hypoxic response in tumor microenvironment. Crit Rev
Oncog. 20:419–434. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Roldo C, Missiaglia E, Hagan JP, Falconi
M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and
Croce CM: MicroRNA expression abnormalities in pancreatic endocrine
and acinar tumors are associated with distinctive pathologic
features and clinical behavior. J Clin Oncol. 24:4677–4684. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Farazi TA, Hoell JI, Morozov P and Tuschl
T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hong X and Yu JJ: MicroRNA-150 suppresses
epithelial mesenchymal transition, invasion and metastasis in
prostate cancer through the TRPM4-mediated β-catenin signaling
pathway. Am J Physiol Cell Physiol. 316:C463–C480. 2019. View Article : Google Scholar
|
11
|
Blenkiron C, Goldstein LD, Thorne NP,
Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE,
Green AR, Ellis IO, et al: MicroRNA expression profiling of human
breast cancer identifies new markers of tumor subtype. Genome Biol.
8:R2142007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kota J, Chivukula RR, O'Donnell KA,
Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P,
Torbenson M, Clark KR, et al: Therapeutic microRNA delivery
suppresses tumorigenesis in a murine liver cancer model. Cell.
137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao S, Gao X, Zang S, Li Y, Feng X and
Yuan X: MicroRNA-383-5p acts as a prognostic marker and inhibitor
of cell proliferation in lung adenocarcinoma by cancerous inhibitor
of protein phosphatase 2A. Oncol Lett. 14:3573–3579. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhiping C, Shijun T, Linhui W, Yapei W,
Lianxi Q and Qiang D: miR-181a promotes epithelial to mesenchymal
transition of prostate cancer cells by targeting TGIF2. Eur Rev Med
Pharmacol Sci. 21:4835–4843. 2017.PubMed/NCBI
|
15
|
Yang ZG, Ma XD, He ZH and Guo YX:
miR-483-5p promotes prostate cancer cell proliferation and invasion
by targeting RBM5. Int Braz J Urol. 43:1060–1067. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu S, Ge J, Zhang Z and Zhou W: miR-129
inhibits cell proliferation and metastasis by targeting ETS1 via
PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother.
96:634–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pashaei E, Ahmady M, Ozen M and Aydin N:
Meta-analysis of miRNA expression profiles for prostate cancer
recurrence following radical prostatectomy. PLoS One.
12:e01795432017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li W, Zhang X, Zhuang H, Chen HG, Chen Y,
Tian W, Wu W, Li Y, Wang S, Zhang L, et al: MicroRNA-137 is a novel
hypoxia-responsive microRNA that inhibits mitophagy via regulation
of two mitophagy receptors FUNDC1 and NIX. J Biol Chem.
289:10691–10701. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Pulukuri SM, Gondi CS, Lakka SS, Jutla A,
Estes N, Gujrati M and Rao JS: RNA interference-directed knockdown
of urokinase plasminogen activator and urokinase plasminogen
activator receptor inhibits prostate cancer cell invasion,
survival, and tumorigenicity in vivo. J Biol Chem. 280:36529–36540.
2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Viticchie G, Lena AM, Latina A, Formosa A,
Gregersen LH, Lund AH, Bernardini S, Mauriello A, Miano R, Spagnoli
LG, et al: miR-203 controls proliferation, migration and invasive
potential of prostate cancer cell lines. Cell Cycle. 10:1121–1131.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vaupel P and Mayer A: Hypoxia in cancer:
Significance and impact on clinical outcome. Cancer Metastasis Rev.
26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shin S, Moon KC, Park KU and Ha E:
MicroRNA-513a-5p mediates TNF-α and LPS induced apoptosis via
downregulation of X-linked inhibitor of apoptotic protein in
endothelial cells. Biochimie. 94:1431–1436. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chan SY, Zhang YY, Hemann C, Mahoney CE,
Zweier JL and Loscalzo J: MicroRNA-210 controls mitochondrial
metabolism during hypoxia by repressing the iron-sulfur cluster
assembly proteins ISCU1/2. Cell Metab. 10:273–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang J, Chen Y, Cui R, Li D, Xiao L, Lin
P, Du Y, Sun H, Yu X and Zheng X: Upregulation of fractalkine
contributes to the proliferative response of prostate cancer cells
to hypoxia via promoting the G1/S phase transition. Mol Med Rep.
12:7907–7914. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shannon AM, Bouchier-Hayes DJ, Condron CM
and Toomey D: Tumour hypoxia, chemotherapeutic resistance and
hypoxia-related therapies. Cancer Treat Rev. 29:297–307. 2003.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Coffey RN, Morrissey C, Taylor CT,
Fitzpatrick JM and Watson RW: Resistance to caspase-dependent,
hypoxia-induced apoptosis is not hypoxia-inducible factor-1 alpha
mediated in prostate carcinoma cells. Cancer. 103:1363–1374. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang Y, Zou Y, Zheng R and Ma X: miR-137
inhibits cell proliferation in acute lymphoblastic leukemia by
targeting JARID1B. Eur J Haematol. 103:215–224. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ding F, Zhang S, Gao S, Shang J, Li Y, Cui
N and Zhao Q: miR-137 functions as a tumor suppressor in pancreatic
cancer by targeting MRGBP. J Cell Biochem. 119:4799–4807. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Du Y, Chen Y, Wang F and Gu L: miR-137
plays tumor suppressor roles in gastric cancer cell lines by
targeting KLF12 and MYO1C. Tumour Biol. 37:13557–13569. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang B, Huang M and Li Q: miR-137
suppresses migration and invasion by targeting EZH2-STAT3 signaling
in human hepatocellular carcinoma. Pathol Res Pract. 214:1980–1986.
2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang M, Gao H, Qu H, Li J, Liu K and Han
Z: miR-137 suppresses tumor growth and metastasis in clear cell
renal cell carcinoma. Pharmacol Rep. 70:963–971. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang W, Chen JH, Shan T,
Aguilera-Barrantes I, Wang LS, Huang TH, Rader JS, Sheng X and
Huang YW: miR-137 is a tumor suppressor in endometrial cancer and
is repressed by DNA hypermethylation. Lab Invest. 98:1397–1407.
2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bi WP, Xia M and Wang XJ: miR-137
suppresses proliferation, migration and invasion of colon cancer
cell lines by targeting TCF4. Oncol Lett. 15:8744–8748.
2018.PubMed/NCBI
|
35
|
Lee SJ, Jeong JH, Kang SH, Kang J, Kim EA,
Lee J, Jung JH, Park HY and Chae YS: MicroRNA-137 inhibits cancer
progression by targeting Del-1 in Triple-negative breast cancer
cells. Int J Mol Sci. 20:pii: E6162. 2019. View Article : Google Scholar
|
36
|
Schoore GV, Mendive F, Pochet R and
Vassart G: Expression pattern of the orphan receptor LGR4/GPR48
gene in the mouse. Histochem Cell Biol. 124:35–50. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Carmon KS, Gong X, Lin Q, Thomas A and Liu
Q: R-spondins function as ligands of the orphan receptors LGR4 and
LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci
USA. 108:11452–11457. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hoshii T, Takeo T, Nakagata N, Takeya M,
Araki K and Yamamura K: LGR4 regulates the postnatal development
and integrity of male reproductive tracts in mice. Biol Reprod.
76:303–313. 2007. View Article : Google Scholar
|
39
|
Koo BK and Clevers H: Stem cells marked by
the R-spondin receptor LGR5. Gastroenterology. 147:289–302. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Leushacke M and Barker N: Lgr5 and Lgr6 as
markers to study adult stem cell roles in self-renewal and cancer.
Oncogene. 31:3009–3022. 2012. View Article : Google Scholar
|
41
|
Dongli W, Binlu H, Senyan Z, Xiaojuan Y,
Wei W and Xinquan W: Structural basis for R-spondin recognition by
LGR4/5/6 receptors. Genes Dev. 27:1339–1344. 2013. View Article : Google Scholar
|
42
|
Kang YE, Kim JM, Kim KS, Chang JY, Jung M,
Lee J, Yi S, Kim HW, Kim JT, Lee K, et al: Upregulation of
RSPO2-GPR48/LGR4 signaling in papillary thyroid carcinoma
contributes to tumor progression. Oncotarget. 8:114980–114994.
2017. View Article : Google Scholar
|
43
|
Luo W, Tan P, Rodriguez M, He L, Tan K,
Zeng L, Siwko S and Liu M: Leucine-rich repeat-containing G protein
coupled receptor 4 (Lgr4) is necessary for prostate cancer
metastasis via epithelial-mesenchymal transition. J Biol Chem.
292:15525–15537. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang J, Qi L, Zhang S, Xu Q and Wang T:
Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR
signaling pathway. Exp Cell Res. 349:77–84. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fang L, Junmin Y, Junyong W, Lijuan Z, Rui
F, Hao Z and Qingsong Z: GPCR48/LGR4 promotes tumorigenesis of
prostate cancer via PI3K/Akt signaling pathway. Med Oncol.
32:492015. View Article : Google Scholar
|
46
|
Orton RJ, Adriaens ME, Gormand A, Sturm
OE, Kolch W and Gilbert DR: Computational modelling of cancerous
mutations in the EGFR/ERK signalling pathway. BMC Syst Biol.
3:1002009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yang Y, Zhao W, Xu QW, Wang XS, Zhang Y
and Zhang J: IQGAP3 promotes EGFR-ERK signaling and the growth and
metastasis of lung cancer cells. PLoS One. 9:e975782014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li L, Gao Y, Zhang L, Zeng J, He D and Sun
Y: Silibinin inhibits cell growth and induces apoptosis by caspase
activation, down-regulating survivin and blocking EGFR-ERK
activation in renal cell carcinoma. Cancer Lett. 272:61–69. 2008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS
and Hong SJ: Cholesterol level of lipid raft microdomains regulates
apoptotic cell death in prostate cancer cells through EGFR-mediated
Akt and ERK signal transduction. Prostate. 67:1061–1069. 2010.
View Article : Google Scholar
|
50
|
Pan H, Cui H, Liu S, Qian Y, Wu H, Li L,
Guan Y, Guan X, Zhang L, Fan HY, et al: Lgr4 gene regulates corpus
luteum maturation through modulation of the WNT-mediated EGFR-ERK
signaling pathway. Endocrinology. 155:3624–3637. 2014. View Article : Google Scholar : PubMed/NCBI
|