1
|
Apalla Z, Lallas A, Sotiriou E, Lazaridou
E and Ioannides D: Epidemiological trends in skin cancer. Dermatol
Pract Concept. 7:1–6. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Leiter U, Eigentler T and Garbe C:
Epidemiology of skin cancer. Adv Exp Med Biol. 810:120–140.
2014.PubMed/NCBI
|
3
|
Newlands C, Currie R, Memon A, Whitaker S
and Woolford T: Non-melanoma skin cancer: United Kingdom National
Multidisciplinary Guidelines. J Laryngol Otol. 130(Suppl 2): pp.
S125–S132. 2016, View Article : Google Scholar : PubMed/NCBI
|
4
|
Satgunaseelan L, Chia N, Suh H, Virk S,
Ashford B, Lum T, Ranson M, Clark J and Gupta R: p16 expression in
cutaneous squamous cell carcinoma of the head and neck is not
associated with integration of high risk HPV DNA or prognosis.
Pathology. 49:494–498. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen H, Takahara M, Xie L, Takeuchi S, Tu
Y, Nakahara T, Uchi H, Moroi Y and Furue M: Levels of the
EMT-related protein Snail/Slug are not correlated with p53/p63 in
cutaneous squamous cell carcinoma. J Cutan Pathol. 40:651–656.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hu X, Liu Y, Ai P, He S, Liu L, Chen C,
Tan Y and Wang T: MicroRNA-186 promotes cell proliferation and
inhibits cell apoptosis in cutaneous squamous cell carcinoma by
targeting RETREG1. Exp Ther Med. 17:1930–1938. 2019.PubMed/NCBI
|
7
|
Mei XL and Zhong S: Long noncoding RNA
LINC00520 prevents the progression of cutaneous squamous cell
carcinoma through the inactivation of the PI3K/Akt signaling
pathway by downregulating EGFR. Chin Med J (Engl). 132:454–465.
2019. View Article : Google Scholar
|
8
|
Hausser J and Zavolan M: Identification
and consequences of miRNA-target interactions - beyond repression
of gene expression. Nat Rev Genet. 15:599–612. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rupaimoole R, Calin GA, Lopez-Berestein G
and Sood AK: miRNA Deregulation in Cancer Cells and the Tumor
Microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hubé F, Ulveling D, Sureau A, Forveille S
and Francastel C: Short intron-derived ncRNAs. Nucleic Acids Res.
45:4768–4781. 2017.PubMed/NCBI
|
11
|
Leisegang MS, Fork C, Josipovic I, Richter
FM, Preussner J, Hu J, Miller MJ, Epah J, Hofmann P, Günther S, et
al: Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic
Function. Circulation. 136:65–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang
Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al: Long noncoding RNA
MALAT1 suppresses breast cancer metastasis. Nat Genet.
50:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu LP, He YJ, Hou JC, Chen X, Zhou SY,
Yang SJ, Li J, Zhang HD, Hu JH, Zhong SL, et al: The role of
circRNAs in cancers. Biosci Rep. 37:BSR201707502017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Andreeva K and Cooper NG: MicroRNAs in the
Neural Retina. Int J Genomics. 2014:1658972014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Patop IL and Kadener S: circRNAs in
Cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar :
|
16
|
Greene J, Baird AM, Brady L, Lim M, Gray
SG, McDermott R and Finn SP: Circular RNAs: Biogenesis, Function
and Role in Human Diseases. Front Mol Biosci. 4:382017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fan X, Weng X, Zhao Y, Chen W, Gan T and
Xu D: Circular RNAs in Cardiovascular Disease: An Overview. BioMed
Res Int. 2017:51357812017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sheng JQ, Liu L, Wang MR and Li PY:
Circular RNAs in digestive system cancer: Potential biomarkers and
therapeutic targets. Am J Cancer Res. 8:1142–1156. 2018.PubMed/NCBI
|
19
|
Su H, Tao T, Yang Z, Kang X, Zhang X, Kang
D, Wu S and Li C: Circular RNA cTFRC acts as the sponge of
MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer.
18:272019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sand M, Bechara FG, Gambichler T, Sand D,
Bromba M, Hahn SA, Stockfleth E and Hessam S: Circular RNA
expression in cutaneous squamous cell carcinoma. J Dermatol Sci.
83:210–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bi W, Huang J, Nie C, Liu B, He G, Han J,
Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes
papillary thyroid cancer progression through modulating
CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin
Cancer Res. 37:2752018. View Article : Google Scholar
|
23
|
Su Y, Xu C, Liu Y, Hu Y and Wu H: Circular
RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression
via multiple miRNAs sponge. Aging (Albany NY). 11:3362–3375.
2019.
|
24
|
Towler BP, Jones CI and Newbury SF:
Mechanisms of regulation of mature miRNAs. Biochem Soc Trans.
43:1208–1214. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Conte F, Fiscon G, Chiara M, Colombo T,
Farina L and Paci P: Role of the long non-coding RNA PVT1 in the
dysregulation of the ceRNA-ceRNA network in human breast cancer.
PLoS One. 12:pp. e01716612017, View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen G, Shi Y, Zhang Y and Sun J:
CircRNA_100782 regulates pancreatic carcinoma proliferation through
the IL6-STAT3 pathway. OncoTargets Ther. 10:5783–5794. 2017.
View Article : Google Scholar
|
27
|
Chen L, Zhang S, Wu J, Cui J, Zhong L,
Zeng L and Ge S: circRNA_100290 plays a role in oral cancer by
functioning as a sponge of the miR-29 family. Oncogene.
36:4551–4561. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
He JH, Li YG, Han ZP, Zhou JB, Chen WM, Lv
YB, He ML, Zuo JD and Zheng L: The CircRNA-ACAP2/Hsa-miR-21-5p/
Tiam1 Regulatory Feedback Circuit Affects the Proliferation,
Migration, and Invasion of Colon Cancer SW480 Cells. Cell Physiol
Biochem. 49:1539–1550. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ma HB, Yao YN, Yu JJ, Chen XX and Li HF:
Extensive profiling of circular RNAs and the potential regulatory
role of circRNA-000284 in cell proliferation and invasion of
cervical cancer via sponging miR-506. Am J Transl Res. 10:592–604.
2018.PubMed/NCBI
|
30
|
Bian T, Jiang D, Liu J, Yuan X, Feng J, Li
Q, Zhang Q, Li X, Liu Y and Zhang J: miR-1236-3p suppresses the
migration and invasion by targeting KLF8 in lung adenocarcinoma
A549 cells. Biochem Biophys Res Commun. 492:461–467. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
An JX, Ma MH, Zhang CD, Shao S, Zhou NM
and Dai DQ: miR-1236-3p inhibits invasion and metastasis in gastric
cancer by targeting MTA2. Cancer Cell Int. 18:662018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Manthei U, Nickells MW, Barnes SH, Ballard
LL, Cui WY and Atkinson JP: Identification of a C3b/iC3 binding
protein of rabbit platelets and leukocytes. A CR1-like candidate
for the immune adherence receptor. J Immunol. 140:1228–1235.
1988.PubMed/NCBI
|
33
|
Wang Y, Yan S, Liu X, Zhang W, Li Y, Dong
R, Zhang Q, Yang Q, Yuan C, Shen K, et al: miR-1236-3p represses
the cell migration and invasion abilities by targeting ZEB1 in
high-grade serous ovarian carcinoma. Oncol Rep. 31:1905–1910. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Miksiunas R, Mobasheri A and Bironaite D:
Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac
Development, Degeneration and Regeneration. Adv Exp Med Biol.
1212:155–178. 2020. View Article : Google Scholar
|
35
|
Carrera M, Bitu CC, de Oliveira CE,
Cervigne NK, Graner E, Manninen A, Salo T and Coletta RD: HOXA10
controls proliferation, migration and invasion in oral squamous
cell carcinoma. Int J Clin Exp Pathol. 8:3613–3623. 2015.PubMed/NCBI
|
36
|
Hur H, Lee JY, Yun HJ, Park BW and Kim MH:
Analysis of HOX gene expression patterns in human breast cancer.
Mol Biotechnol. 56:64–71. 2014. View Article : Google Scholar
|
37
|
Holland PW: Evolution of homeobox genes.
Wiley Interdiscip Rev Dev Biol. 2:31–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Joo MK, Park JJ, Yoo HS, Lee BJ, Chun HJ,
Lee SW and Bak YT: The roles of HOXB7 in promoting migration,
invasion, and anti-apoptosis in gastric cancer. J Gastroenterol
Hepatol. 31:1717–1726. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsuboi M, Taniuchi K, Shimizu T, Saito M
and Saibara T: The transcription factor HOXB7 regulates ERK kinase
activity and thereby stimulates the motility and invasiveness of
pancreatic cancer cells. J Biol Chem. 292:17681–17702. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Monterisi S, Lo Riso P, Russo K, Bertalot
G, Vecchi M, Testa G, Di Fiore PP and Bianchi F: HOXB7
overexpression in lung cancer is a hallmark of acquired stem-like
phenotype. Oncogene. 37:3575–3588. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang K, Jin J, Ma T and Zhai H:
MiR-376c-3p regulates the proliferation, invasion, migration, cell
cycle and apoptosis of human oral squamous cancer cells by
suppressing HOXB7. Biomed Pharmacother. 91:517–525. 2017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Heinonen H, Lepikhova T, Sahu B, Pehkonen
H, Pihlajamaa P, Louhimo R, Gao P, Wei GH, Hautaniemi S, Jänne OA,
et al: Identification of several potential chromatin binding sites
of HOXB7 and its downstream target genes in breast cancer. Int J
Cancer. 137:2374–2383. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tu W, Zhu X, Han Y, Wen Y, Qiu G and Zhou
C: Overexpression of HOXB7 is associated with a poor prognosis in
patients with gastric cancer. Oncol Lett. 10:2967–2973. 2015.
View Article : Google Scholar
|
44
|
Gao D and Chen HQ: Specific knockdown of
HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and
invasion while inducing apoptosis via the Wnt/beta-catenin
signaling pathway. Am J Physiol Cell Physiol. 315:C675–C86. 2018.
View Article : Google Scholar
|