Biomarkers of tumor invasiveness in proteomics (Review)
- Authors:
- Daniel L. Pouliquen
- Alice Boissard
- Olivier Coqueret
- Catherine Guette
-
Affiliations: CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France, Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France - Published online on: May 28, 2020 https://doi.org/10.3892/ijo.2020.5075
- Pages: 409-432
-
Copyright: © Pouliquen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI | |
Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn H-J, André F, Baselga J, et al: Panel Members: Tailoring therapies - improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 26:1533–1546. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al: NCI CPTAC: Proteogenomic characterization of human colon and rectal cancer. Nature. 513:382–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johansson HJ, Socciarelli F, Vacanti NM, Haugen MH, Zhu Y, Siavelis I, Fernandez-Woodbridge A, Aure MR, Sennblad B, Vesterlund M, et al: Consortia Oslo Breast Cancer Research Consortium (OSBREAC): Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun. 10:16002019. View Article : Google Scholar | |
Mann M: Quantitative proteomics? Nat Biotechnol. 17:954–955. 1999. View Article : Google Scholar : PubMed/NCBI | |
Monti C, Zilocchi M, Colugnat I and Alberio T: Proteomics turns functional. J Proteomics. 198:36–44. 2019. View Article : Google Scholar | |
Simpson RJ and Dorow DS: Cancer proteomics: From signaling networks to tumor markers. Trends Biotechnol. 19(Suppl): S40–S48. 2001. View Article : Google Scholar | |
Cheung CHY and Juan HF: Quantitative proteomics in lung cancer. J Biomed Sci. 24:372017. View Article : Google Scholar : PubMed/NCBI | |
Geiger T and Geiger B: Towards elucidation of functional molecular signatures of the adhesive-migratory phenotype of malignant cells. Semin Cancer Biol. 20:146–152. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K and Krzyzosiak WJ: Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res. 44:9050–9070. 2016.PubMed/NCBI | |
Abazova N and Krijgsveld J: Advances in stem cell proteomics. Curr Opin Genet Dev. 46:149–155. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eubanks CG, Dayebgadoh G, Liu X and Washburn MP: Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics. 14:905–915. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Serrano M, Camafeita E, Loureiro M and Peral B: Mitoproteomics: Tackling mitochondrial dysfunction in human disease. Oxid Med Cell Longev. 2018:14359342018. View Article : Google Scholar : PubMed/NCBI | |
Suwakulsiri W, Rai A, Chen M, Greening DW and Simpson RJ: Proteomic profiling reveals key cancer progression modulators in shed microvesicles released from isogenic human primary and metastatic colorectal cancer cell lines. Biochim Biophys Acta Proteins Proteom. 1867:1401712019. View Article : Google Scholar | |
Li Z, Li N, Shen L and Fu J: Quantitative proteomic analysis identifies MAPK15 as a potential regulator of radioresistance in nasopharyngeal carcinoma cells. Front Oncol. 8:5482018. View Article : Google Scholar : PubMed/NCBI | |
Gillet L, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R and Aebersold R: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 11:pp. O111.0167172012, View Article : Google Scholar : PubMed/NCBI | |
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC and Aebersold R: Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol Syst Biol. 14:pp. e81262018, View Article : Google Scholar : PubMed/NCBI | |
Krisp C and Molloy MP: SWATH mass spectrometry for proteomics of non-depleted plasma. Methods Mol Biol. 1619:373–383. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jamwal R, Barlock BJ, Adusumalli S, Ogasawara K, Simons BL and Akhlaghi F: Multiplex and label-free relative quantification approach for studying protein abundance of drug metabolizing enzymes in human liver microsomes using SWATH-MS. J Proteome Res. 16:4134–4143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Skotland T, Berge V, Sandvig K and Llorente A: Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. Eur J Pharm Sci. 98:80–85. 2017. View Article : Google Scholar | |
Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, Boisgerault N, Coqueret O, Guette C, Grégoire M, et al: Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget. 9:16311–16329. 2018. View Article : Google Scholar : PubMed/NCBI | |
Besson D, Pavageau A-H, Valo I, Bourreau A, Bélanger A, Eymerit-Morin C, Moulière A, Chassevent A, Boisdron-Celle M, Morel A, et al: A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol Cell Proteomics. 10:0097122011. View Article : Google Scholar : PubMed/NCBI | |
Valo I, Raro P, Boissard A, Maarouf A, Jézéquel P, Verriele V, Campone M, Coqueret O and Guette C: OLFM4 expression in ductal carcinoma in situ and in invasive breast cancer cohorts by a SWATH-based proteomic approach. Proteomics. 19:pp. e18004462019, View Article : Google Scholar : PubMed/NCBI | |
Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, et al: Single cell profiling of circulating tumor cells: Transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 7:e337882012. View Article : Google Scholar : PubMed/NCBI | |
Lukanidin E and Sleeman JP: Building the niche: The role of the S100 proteins in metastatic growth. Semin Cancer Biol. 22:216–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bresnick AR, Weber DJ and Zimmer DB: S100 proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shabani F, Farasat A, Mahdavi M and Gheibi N: Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res. 67:801–812. 2018. View Article : Google Scholar : PubMed/NCBI | |
Björk P, Källberg E, Wellmar U, Riva M, Olsson A, He Z, Törngren M, Liberg D, Ivars F and Leanderson T: Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One. 8:pp. e630122013, View Article : Google Scholar : PubMed/NCBI | |
Fei F, Qu J, Zhang M, Li Y and Zhang S: S100A4 in cancer progression and metastasis: A systematic review. Oncotarget. 8:73219–73239. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura H, Otsuka A, Michishita M, Yamamoto M, Ashizawa M, Zushi M, Moriya M, Azakami D, Ochiai K, Matsuda Y, et al: Expression and roles of S100A4 in anaplastic cells of canine mammary carcinomas. Vet Pathol. 56:389–398. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Cao X: Characteristics and significance of the pre-metastatic niche. Cancer Cell. 30:668–681. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hansen MT, Forst B, Cremers N, Quagliata L, Ambartsumian N, Grum-Schwensen B, Klingelhöfer J, Abdul-Al A, Herrmann P, Osterland M, et al: A link between inflammation and metastasis: Serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene. 34:424–435. 2015. View Article : Google Scholar | |
Mahmood MQ, Ward C, Muller HK, Sohal SS and Walters EH: Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): A mutual association with airway disease. Med Oncol. 34:452017. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Liu J, Yang B, Gao X, Gao LL, Kong QY, Zhang P and Li H: Inversed expression patterns of S100A4 and E-cadherin in cervical cancers: Implication in epithelial-mesenchymal transition. Anat Rec (Hoboken). 300:pp. 2184–2191. 2017, View Article : Google Scholar | |
Roulois D, Deshayes S, Guilly MN, Nader JS, Liddell C, Robard M, Hulin P, Ouacher A, Le Martelot V, Fonteneau JF, et al: Characterization of preneoplastic and neoplastic rat mesothelial cell lines: The involvement of TETs, DNMTs, and 5-hydroxy-methylcytosine. Oncotarget. 7:34664–34687. 2016. View Article : Google Scholar : PubMed/NCBI | |
Donato R, Sorci G and Giambanco I: S100A6 protein: Functional roles. Cell Mol Life Sci. 74:2749–2760. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lyu X, Li H, Ma X, Li X, Gao Y, Ni D, Shen D, Gu L, Wang B, Zhang Y, et al: High-level S100A6 promotes metastasis and predicts the outcome of T1-T2stage in clear cell renal cell carcinoma. Cell Biochem Biophys. 71:279–290. 2015. View Article : Google Scholar | |
Luo X, Sharff KA, Chen J, He T-C and Luu HH: S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res. 466:2060–2070. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang K, Jiang X and Zhang J: S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Dig Dis Sci. 59:2136–2144. 2014. View Article : Google Scholar : PubMed/NCBI | |
Popa SJ, Stewart SE and Moreau K: Unconventional secretion of annexins and galectins. Semin Cell Dev Biol. 83:42–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gerke V, Creutz CE and Moss SE: Annexins: Linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 6:449–461. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Liu S, Guo C, Wang J, Greenaway FT and Sun M-Z: Role of annexin A6 in cancer (Review). Oncol Lett. 10:1947–1952. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C and Rentero C: Annexin A6-A multifunctional scaffold in cell motility. Cell Adhes Migr. 11:288–304. 2017. View Article : Google Scholar | |
Sakwe AM, Koumangoye R, Guillory B and Ochieng J: Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res. 317:823–837. 2011. View Article : Google Scholar : | |
Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, et al: Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 21:190–202. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koumangoye RB, Nangami GN, Thompson PD, Agboto VK, Ochieng J and Sakwe AM: Reduced annexin A6 expression promotes the degradation of activated epidermal growth factor receptor and sensitizes invasive breast cancer cells to EGFR-targeted tyrosine kinase inhibitors. Mol Cancer. 12:1672013. View Article : Google Scholar : PubMed/NCBI | |
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, et al: Annexin A6 and late endosomal cholesterol modulate integrin recycling and cell migration. J Biol Chem. 291:1320–1335. 2016. View Article : Google Scholar : | |
Widatalla SE, Korolkova OY, Whalen DS, Goodwin JS, Williams KP, Ochieng J and Sakwe AM: Lapatinib-induced annexin A6 upregulation as an adaptive response of triple-negative breast cancer cells to EGFR tyrosine kinase inhibitors. Carcinogenesis. 40:998–1009. 2019. View Article : Google Scholar : | |
Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, Bressy C, Sergé A, Lavaut M-N, Dusetti N, et al: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest. 126:4140–4156. 2016. View Article : Google Scholar : PubMed/NCBI | |
Whalen DS, Widatalla SE, Korolkova OY, Nangami GS, Beasley HK, Williams SD, Virgous C, Lehmann BD, Ochieng J and Sakwe AM: Implication of calcium activated RasGRF2 in Annexin A6-mediated breast tumor cell growth and motility. Oncotarget. 10:133–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sheikh MH and Solito E: Annexin A1: Uncovering the many talents of an old protein. Int J Mol Sci. 19:10452018. View Article : Google Scholar : | |
Babbin BA, Lee WY, Parkos CA, Winfree LM, Akyildiz A, Perretti M and Nusrat A: Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem. 281:19588–19599. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Liu S and Sun M-Z: Potential role of Anxa1 in cancer. Future Oncol. 9:1773–1793. 2013. View Article : Google Scholar : PubMed/NCBI | |
Swa HLF, Shaik AA, Lim LHK and Gunaratne J: Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics. 15:408–418. 2015. View Article : Google Scholar | |
Okano M, Kumamoto K, Saito M, Onozawa H, Saito K, Abe N, Ohtake T and Takenoshita S: Upregulated Annexin A1 promotes cellular invasion in triple-negative breast cancer. Oncol Rep. 33:1064–1070. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tu Y, Johnstone CN and Stewart AG: Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes. Pharmacol Res. 119:278–288. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao S-H, Zhao X-Y, Han Y-H, Zhang J, Wang L-S, Xia L, Zhao K-W, Zheng Y, Guo M and Chen G-Q: Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics. 9:3901–3912. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Wang J, Xu Y, Xiao H, Li J and Wang Z: Screening critical genes associated with malignant glioma using bioinformatics analysis. Mol Med Rep. 16:6580–6589. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Ko J and Jang S-W: The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells. Biochem Biophys Res Commun. 423:188–194. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grindheim AK, Saraste J and Vedeler A: Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta, Gen Subj. 1861A:A2515–A2529. 2017. View Article : Google Scholar | |
Christensen MV, Høgdall CK, Jochumsen KM and Høgdall EVS: Annexin A2 and cancer: A systematic review. Int J Oncol. 52:5–18. 2018. | |
Maule F, Bresolin S, Rampazzo E, Boso D, Della Puppa A, Esposito G, Porcù E, Mitola S, Lombardi G, Accordi B, et al: Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget. 7:54632–54649. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li H, Ban Z, Nai M, Yang L, Chen Y and Xu Y: Annexin A2 inhibition suppresses ovarian cancer progression via regulating β-catenin/EMT. Oncol Rep. 37:3643–3650. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rocha MR, Barcellos-de-Souza P, Sousa-Squiavinato ACM, Fernandes PV, de Oliveira IM, Boroni M and Morgado-Diaz JA: Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-β induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep. 8:112852018. View Article : Google Scholar | |
Yoneura N, Takano S, Yoshitomi H, Nakata Y, Shimazaki R, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Miyazaki M, et al: Expression of annexin II and stromal tenascin C promotes epithelial to mesenchymal transition and correlates with distant metastasis in pancreatic cancer. Int J Mol Med. 42:821–830. 2018.PubMed/NCBI | |
Zhang Q, Zhao Z, Ma Y, Wang H, Ma J, He X and Zhang D: Combined expression of S100A4 and Annexin A2 predicts disease progression and overall survival in patients with urothelial carcinoma. Urol Oncol. 32:798–805. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Ye Z, Yang Q, He X, Wang H and Zhao Z: Upregulated expression of annexin II is a prognostic marker for patients with gastric cancer. World J Surg Oncol. 10:1032012. View Article : Google Scholar : PubMed/NCBI | |
Korwar AM, Bhonsle HS, Chougale AD, Kote SS, Gawai KR, Ghole VS, Koppikar CB and Kulkarni MJ: Analysis of AGE modified proteins and RAGE expression in HER2/neu negative invasive ductal carcinoma. Biochem Biophys Res Commun. 419:490–494. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sheng SH and Zhu HL: Proteomic analysis of pleural effusion from lung adenocarcinoma patients by shotgun strategy. Clin Transl Oncol. 16:153–157. 2014. View Article : Google Scholar | |
Ricciardelli C, Lokman NA, Ween MP and Oehler MK: WOMEN IN CANCER THEMATIC REVIEW: Ovarian cancer-peritoneal cell interactions promote extracellular matrix processing. Endocr Relat Cancer. 23:T155–T168. 2016. View Article : Google Scholar : PubMed/NCBI | |
van den Brûle FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu F-T, Cooper DNW, Pieters C, Sobel ME and Castronovo V: Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol. 27:1185–1191. 1996. View Article : Google Scholar : PubMed/NCBI | |
Camby I, Belot N, Rorive S, Lefranc F, Maurage C-A, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, et al: Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol. 11:12–26. 2001. View Article : Google Scholar : PubMed/NCBI | |
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E and Faivre S: Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev. 40:307–319. 2014. View Article : Google Scholar | |
Cousin JM and Cloninger MJ: The role of galectin-1 in cancer progression, and synthetic multivalent systems for the study of galectin-1. Int J Mol Sci. 17:15662016. View Article : Google Scholar : | |
Bhat R, Belardi B, Mori H, Kuo P, Tam A, Hines WC, Le Q-T, Bertozzi CR and Bissell MJ: Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc Natl Acad Sci USA. 113:E4820–E4827. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen K-H, Li C-F, Chien L-H, Huang C-H, Su C-C, Liao AC and Wu T-F: Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway. Cancer Sci. 107:1390–1398. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chong Y, Tang D, Xiong Q, Jiang X, Xu C, Huang Y, Wang J, Zhou H, Shi Y, Wu X, et al: Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res. 35:1752016. View Article : Google Scholar | |
Chong Y, Tang D, Gao J, Jiang X, Xu C, Xiong Q, Huang Y, Wang J, Zhou H, Shi Y, et al: Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. Oncotarget. 7:83611–83626. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang P-F, Li K-S, Shen YH, Gao P-T, Dong Z-R, Cai J-B, Zhang C, Huang X-Y, Tian M-X, Hu Z-Q, et al: Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 7:e22012016. View Article : Google Scholar : PubMed/NCBI | |
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L, Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, et al: Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett. 397:43–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noda Y, Kishino M, Sato S, Hirose K, Sakai M, Fukuda Y, Murakami S and Toyosawa S: Galectin-1 expression is associated with tumour immunity and prognosis in gingival squamous cell carcinoma. J Clin Pathol. 70:126–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song L, Tang JW, Owusu L, Sun M-Z, Wu J and Zhang J: Galectin-3 in cancer. Clin Chim Acta. 431:185–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA, Estrella JS, Chen Q, Correa AM, Ma L, Scott AW, Jin J, Liu B, Xie M, Sudo K, et al: Galectin-3 expression is prognostic in diffuse type gastric adenocarcinoma, confers aggressive phenotype, and can be targeted by YAP1/BET inhibitors. Br J Cancer. 118:52–61. 2018. View Article : Google Scholar : | |
Ruvolo PP: Galectin 3 as a guardian of the tumor microenvi-ronment. Biochim Biophys Acta. 1863:427–437. 2016. View Article : Google Scholar | |
Cardoso AC, Andrade LN, Bustos SO and Chammas R: Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol. 6:1272016. View Article : Google Scholar : PubMed/NCBI | |
Mackay A, Jones C, Dexter T, Silva RL, Bulmer K, Jones A, Simpson P, Harris RA, Jat PS, Neville AM, et al: cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene. 22:2680–2688. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nomura T and Katunuma N: Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest. 52:1–9. 2005. View Article : Google Scholar : PubMed/NCBI | |
Derocq D, Prébois C, Beaujouin M, Laurent-Matha V, Pattingre S, Smith GK and Liaudet-Coopman E: Cathepsin D is partly endocytosed by the LRP1 receptor and inhibits LRP1-regulated intramembrane proteolysis. Oncogene. 31:3202–3212. 2012. View Article : Google Scholar | |
Dubey V and Luqman S: Cathepsin D as a promising target for the discovery of novel anticancer agents. Curr Cancer Drug Targets. 17:404–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown KD: Transglutaminase 2 and NF-κB: An odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat. 137:329–336. 2013. View Article : Google Scholar | |
Yang P, Yu D, Zhou J, Zhuang S and Jiang T: TGM2 interference regulates the angiogenesis and apoptosis of colorectal cancer via Wnt/β-catenin pathway. Cell Cycle. 18:1122–1134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garamszegi N, Garamszegi SP, Shehadeh LA and Scully SP: Extracellular matrix-induced gene expression in human breast cancer cells. Mol Cancer Res. 7:319–329. 2009. View Article : Google Scholar : PubMed/NCBI | |
Giehl K and Menke A: Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci. 13:3975–3985. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Shin J, Park KH, Jeung H-C, Rha SY, Noh SH, Yang WI and Chung HC: Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim Biophys Acta. 1772:1033–1040. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Diehn M, Bollen AW, Israel MA and Gupta N: Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J Neurooncol. 86:133–141. 2008. View Article : Google Scholar | |
Montgomery H, Rustogi N, Hadjisavvas A, Tanaka K, Kyriacou K and Sutton CW: Proteomic profiling of breast tissue collagens and site-specific characterization of hydroxyproline residues of collagen alpha-1-(I). J Proteome Res. 11:5890–5902. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mitsuhashi A, Goto H, Saijo A, Trung VT, Aono Y, Ogino H, Kuramoto T, Tabata S, Uehara H, Izumi K, et al: Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun. 6:87922015. View Article : Google Scholar : PubMed/NCBI | |
Rong L, Huang W, Tian S, Chi X, Zhao P and Liu F: COL1A2 is a novel biomarker to improve clinical prediction in human gastric cancer: Integrating bioinformatics and meta-analysis. Pathol Oncol Res. 24:129–134. 2018. View Article : Google Scholar | |
Yang X, Staren ED, Howard JM, Iwamura T, Bartsch JE and Appert HE: Invasiveness and MMP expression in pancreatic carcinoma. J Surg Res. 98:33–39. 2001. View Article : Google Scholar : PubMed/NCBI | |
Parmo-Cabañas M, Molina-Ortiz I, Matías-Román S, García-Bernal D, Carvajal-Vergara X, Valle I, Pandiella A, Arroyo AG and Teixidó J: Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes. J Pathol. 208:108–118. 2006. View Article : Google Scholar | |
Ren F, Tang R, Zhang X, Madushi WM, Luo D, Dang Y, Li Z, Wei K and Chen G: Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: A systematic review and meta-analysis. PLoS One. 10:pp. e01355442015, View Article : Google Scholar : PubMed/NCBI | |
Liu H-Y, Gu W-J, Wang C-Z, Ji X-J and Mu Y-M: Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials. Medicine (Baltimore). 95:pp. e39042016, View Article : Google Scholar | |
Delassus GS, Cho H, Park J and Eliceiri GL: New pathway links from cancer-progression determinants to gene expression of matrix metalloproteinases in breast cancer cells. J Cell Physiol. 217:739–744. 2008. View Article : Google Scholar : PubMed/NCBI | |
Franco-Barraza J, Valdivia-Silva JE, Zamudio-Meza H, Castillo A, García-Zepeda EA, Benítez-Bribiesca L and Meza I: Actin cytoskeleton participation in the onset of IL-1beta induction of an invasive mesenchymal-like phenotype in epithelial MCF-7 cells. Arch Med Res. 41:170–181. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsuura I, Lai C-Y and Chiang K-N: Functional interaction between Smad3 and S100A4 (metastatin-1) for TGF-beta-mediated cancer cell invasiveness. Biochem J. 426:327–335. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oskarsson T: Extracellular matrix components in breast cancer progression and metastasis. Breast. 22(Suppl 2): S66–S72. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Topalovski M and Brekken RA: Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett. 381:252–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liao Y-X, Zhang Z-P, Zhao J and Liu J-P: Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway. Cell Physiol Biochem. 48:1382–1396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sercu S, Zhang L and Merregaert J: The extracellular matrix protein 1: Its molecular interaction and implication in tumor progression. Cancer Invest. 26:375–384. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, Russnes HG, Nesland JM, Tammi R, Auvinen P, et al: Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 214:357–367. 2008. View Article : Google Scholar | |
Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA and Weigel RJ: Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: A Hospital-based Cohort Study in Iowa. Ann Surg Oncol. 16:2280–2287. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, Choi JH, Lee S-J, Yu J-H, Lee JW, et al: ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene. 34:6055–6065. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Jia W and Li J: ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesen-chymal transition. World J Surg Oncol. 14:1952016. View Article : Google Scholar | |
Gómez-Contreras P, Ramiro-Díaz JM, Sierra A, Stipp C, Domann FE, Weigel RJ and Lal G: Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin Exp Metastasis. 34:37–49. 2017. View Article : Google Scholar : | |
Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, et al: Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene. 37:744–755. 2018. View Article : Google Scholar | |
Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC and Watson PH: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 9:207–214. 2003.PubMed/NCBI | |
Vuillermoz B, Khoruzhenko A, D'Onofrio M-F, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart F-X and Wegrowski Y: The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res. 296:294–306. 2004. View Article : Google Scholar : PubMed/NCBI | |
Radwanska A, Litwin M, Nowak D, Baczynska D, Wegrowski Y, Maquart F-X and Malicka-Blaszkiewicz M: Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp Cell Res. 318:2312–2323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Andrade de Paula CA, Carneiro CR, Ortiz V, Toma L, Kao WW and Nader HB: Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 319:967–981. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Wit M, Carvalho B, Delis-van Diemen PM, van Alphen C, Beliën JAM, Meijer GA and Fijneman RJA: Lumican and versican protein expression are associated with colorectal adenoma-to-carcinoma progression. PLoS One. 12:pp. e01747682017, View Article : Google Scholar : PubMed/NCBI | |
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R and Prados J: Microenvironmental modulation of decorin and lumican in Temozolomide-resistant glioblastoma and neuroblastoma cancer stem-like cells. PLoS One. 10:pp. e01341112015, View Article : Google Scholar : PubMed/NCBI | |
Jeanne A, Untereiner V, Perreau C, Proult I, Gobinet C, Boulagnon-Rombi C, Terryn C, Martiny L, Brézillon S and Dedieu S: Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide. Sci Rep. 7:77002017. View Article : Google Scholar : PubMed/NCBI | |
Gritsenko PG, Ilina O and Friedl P: Interstitial guidance of cancer invasion. J Pathol. 226:185–199. 2012. View Article : Google Scholar | |
Ruan K, Bao S and Ouyang G: The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci. 66:2219–2230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim G-E, Lee JS, Park MH and Yoon JH: Epithelial periostin expression is correlated with poor survival in patients with invasive breast carcinoma. PLoS One. 12:pp. e01876352017, View Article : Google Scholar : PubMed/NCBI | |
Mino M, Kanno K, Okimoto K, Sugiyama A, Kishikawa N, Kobayashi T, Ono J, Izuhara K, Kobayashi T, Ohigashi T, et al: Periostin promotes malignant potential by induction of epithelial-mesenchymal transition in intrahepatic cholangiocar-cinoma. Hepatol Commun. 1:1099–1109. 2017. View Article : Google Scholar | |
Sid B, Sartelet H, Bellon G, El Btaouri H, Rath G, Delorme N, Haye B and Martiny L: Thrombospondin 1: A multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol. 49:245–258. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okada K, Hirabayashi K, Imaizumi T, Matsuyama M, Yazawa N, Dowaki S, Tobita K, Ohtani Y, Tanaka M, Inokuchi S, et al: Stromal thrombospondin-1 expression is a prognostic indicator and a new marker of invasiveness in intraductal papillary-mucinous neoplasm of the pancreas. Biomed Res. 31:13–19. 2010. View Article : Google Scholar : PubMed/NCBI | |
Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, Guarmit B, Morin A, Prevarskaya N, Delongchamps NB, et al: Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 71:7649–7658. 2011. View Article : Google Scholar : PubMed/NCBI | |
Radziwon-Balicka A, Santos-Martinez MJ, Corbalan JJ, O'Sullivan S, Treumann A, Gilmer JF, Radomski MW and Medina C: Mechanisms of platelet-stimulated colon cancer invasion: Role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis. 35:324–332. 2014. View Article : Google Scholar | |
Joshi R, Goihberg E, Ren W, Pilichowska M and Mathew P: Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the α5β1 integrin. Cell Adhes Migr. 11:305–315. 2017. View Article : Google Scholar | |
Lebdai S, Verhoest G, Parikh H, Jacquet SF, Bensalah K, Chautard D, Rioux Leclercq N, Azzouzi AR and Bigot P: Identification and validation of TGFBI as a promising prognosis marker of clear cell renal cell carcinoma. Urol Oncol. 33:pp. 69.e11–69.e18. 2015, View Article : Google Scholar | |
Nummela P, Lammi J, Soikkeli J, Saksela O, Laakkonen P and Hölttä E: Transforming growth factor beta-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells. Am J Pathol. 180:1663–1674. 2012. View Article : Google Scholar : PubMed/NCBI | |
Klamer SE, Kuijk CG, Hordijk PL, van der Schoot CE, von Lindern M, van Hennik PB and Voermans C: BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells. Cell Adhes Migr. 7:434–449. 2013. View Article : Google Scholar | |
Kontostathi G, Zoidakis J, Makridakis M, Lygirou V, Mermelekas G, Papadopoulos T, Vougas K, Vlamis-Gardikas A, Drakakis P, Loutradis D, et al: Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis. BioMed Res Int. 2017:41807032017. View Article : Google Scholar : PubMed/NCBI | |
Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ and Simpson RJ: Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Proteome Res. 8:2827–2837. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lunter PC, van Kilsdonk JWJ, van Beek H, Cornelissen IMHA, Bergers M, Willems PHGM, van Muijen GNP and Swart GWM: Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res. 65:8801–8808. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ofori-Acquah SF and King JA: Activated leukocyte cell adhesion molecule: A new paradox in cancer. Transl Res. 151:122–128. 2008. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH, Eggle D, Klostermann S and Swart GWM: ALCAM/CD166: Cancer-related issues. Cancer Genomics Proteomics. 7:231–243. 2010.PubMed/NCBI | |
von Lersner A, Droesen L and Zijlstra A: Modulation of cell adhesion and migration through regulation of the immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis. 36:87–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
Glentis A, Gurchenkov V and Matic Vignjevic D: Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes Migr. 8:236–245. 2014. View Article : Google Scholar | |
Pozzi A, Yurchenco PD and Iozzo RV: The nature and biology of basement membranes. Matrix Biol. 57–58:1–11. 2017. View Article : Google Scholar | |
Randles MJ, Humphries MJ and Lennon R: Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 57–58:12–28. 2017. View Article : Google Scholar | |
Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, Zhang H, Wen T, Zhang K, Huo X, et al: NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget. 8:33110–33121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pedrola N, Devis L, Llauradó M, Campoy I, Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L, Abal M, Alameda F, et al: Nidogen 1 and Nuclear Protein 1: Novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis. 32:467–478. 2015. View Article : Google Scholar : PubMed/NCBI | |
McMahon B and Kwaan HC: The plasminogen activator system and cancer. Pathophysiol Haemost Thromb. 36:184–194. 2008. View Article : Google Scholar | |
Durand MKV, Bødker JS, Christensen A, Dupont DM, Hansen M, Jensen JK, Kjelgaard S, Mathiasen L, Pedersen KE, Skeldal S, et al: Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 91:438–449. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sitaram RT, Mallikarjuna P, Landström M and Ljungberg B: Transforming growth factor-β promotes aggressiveness and invasion of clear cell renal cell carcinoma. Oncotarget. 7:35917–35931. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rabi ZA, Todorović-Raković N, Vujasinović T, Milovanović J and Nikolić-Vukosavljević D: Markers of progression and invasion in short term follow up of untreated breast cancer patients. Cancer Biomark. 15:745–754. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rhone P, Ruszkowska-Ciastek B, Bielawski K, Brkic A, Zarychta E, Góralczyk B, Roszkowski K and Rość D: Comprehensive analysis of haemostatic profile depending on clinicopathological determinants in breast cancer patients. Biosci Rep. 38:BSR201716572018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wei X, He J, Tian X, Yuan S and Sun L: Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother. 105:83–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ochieng J, Nangami G, Sakwe A, Moye C, Alvarez J, Whalen D, Thomas P and Lammers P: Impact of Fetuin-A (AHSG) on tumor progression and type 2 diabetes. Int J Mol Sci. 19:22112018. View Article : Google Scholar : | |
Nangami GN, Watson K, Parker-Johnson K, Okereke KO, Sakwe A, Thompson P, Frimpong N and Ochieng J: Fetuin-A (α2HS-glycoprotein) is a serum chemo-attractant that also promotes invasion of tumor cells through Matrigel. Biochem Biophys Res Commun. 438:660–665. 2013. View Article : Google Scholar : PubMed/NCBI | |
Watson K, Koumangoye R, Thompson P, Sakwe AM, Patel T, Pratap S and Ochieng J: Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading. FEBS Lett. 586:3458–3463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niu L, Song X, Wang N, Xue L, Song X and Xie L: Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 110:433–442. 2019. View Article : Google Scholar | |
Adams GN, Rosenfeldt L, Frederick M, Miller W, Waltz D, Kombrinck K, McElhinney KE, Flick MJ, Monia BP, Revenko AS, et al: Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res. 75:4235–4243. 2015. View Article : Google Scholar : PubMed/NCBI | |
Honda K-I, Asada R, Kageyama K, Fukuda T, Terada H, Yasui T, Sumi T, Koyama M, Ishiko O and Sugawa T: Protein complex of fibrinogen gamma chain and complement factor H in ovarian cancer patient plasma. Anticancer Res. 37:2861–2866. 2017.PubMed/NCBI | |
Duan S, Gong B, Wang P, Huang H, Luo L and Liu F: Novel prognostic biomarkers of gastric cancer based on gene expression microarray: COL12A1, GSTA3, FGA and FGG. Mol Med Rep. 18:3727–3736. 2018.PubMed/NCBI | |
Zhang X, Wang F, Huang Y, Ke K, Zhao B, Chen L, Liao N, Wang L, Li Q, Liu X, et al: FGG promotes migration and invasion in hepatocellular carcinoma cells through activating epithelial to mesenchymal transition. Cancer Manag Res. 11:1653–1665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brakebusch C and Fässler R: beta 1 integrin function in vivo: Adhesion, migration and more. Cancer Metastasis Rev. 24:403–411. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Guo J, Liao Q and Zhao Y: β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication (Review). Oncol Lett. 15:5412–5416. 2018.PubMed/NCBI | |
Sun Q, Zhou C, Ma R, Guo Q, Huang H, Hao J, Liu H, Shi R and Liu B: Prognostic value of increased integrin-beta 1 expression in solid cancers: A meta-analysis. OncoTargets Ther. 11:1787–1799. 2018. View Article : Google Scholar | |
Albrektsen T, Richter HE, Clausen JT and Fleckner J: Identification of a novel integral plasma membrane protein induced during adipocyte differentiation. Biochem J. 359:393–402. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pessentheiner AR, Huber K, Pelzmann HJ, Prokesch A, Radner FPW, Wolinski H, Lindroos-Christensen J, Hoefler G, Rülicke T, Birner-Gruenberger R, et al: APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion. FASEB J. 31:4088–4103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gabriele C, Cantiello F, Nicastri A, Crocerossa F, Russo GI, Cicione A, Vartolomei MD, Ferro M, Morgia G, Lucarelli G, et al: High-throughput detection of low abundance sialylated glycoproteins in human serum by TiO2 enrichment and targeted LC-MS/MS analysis: Application to a prostate cancer sample set. Anal Bioanal Chem. 411:755–763. 2019. View Article : Google Scholar | |
Jiang S, Wang X, Song D, Liu X, Gu Y, Xu Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Res. 79:3063–3075. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Miyamori H, Sato H, Yamamoto E and Sasaki T: S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett. 230:211–218. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shin J, Song I-S, Pak JH and Jang S-W: Upregulation of annexin A1 expression by butyrate in human melanoma cells induces invasion by inhibiting E-cadherin expression. Tumour Biol. 37:14577–14584. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wong SHM, Fang CM, Chuah L-H, Leong CO and Ngai SC: E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 121:11–22. 2018. View Article : Google Scholar | |
Yu W, Wu J, Ning ZL, Liu QY and Quan RL: High expression of peroxiredoxin 1 is associated with epithelial-mesenchymal transition marker and poor prognosis in gastric cancer. Med Sci Monit. 24:2259–2270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim S-Y: Cancer energy metabolism: Shutting power off cancer factory. Biomol Ther (Seoul). 26:39–44. 2018. View Article : Google Scholar | |
Warburg O, Posener K and Negelein E: Über den stoffwechsel der carcinomzelle. Biochem Zeitschr. 152:309–344. 1924. | |
Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, Wu L, Lin B and He R: Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep. 38:1822–1832. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lincet H and Icard P: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene. 34:3751–3759. 2015. View Article : Google Scholar | |
Lone SN, Maqbool R, Parray FQ and Ul Hussain M: Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J Cell Physiol. 233:8919–8929. 2018. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI | |
Madigan AA, Rycyna KJ, Parwani AV, Datiri YJ, Basudan AM, Sobek KM, Cummings JL, Basse PH, Bacich DJ and O'Keefe DS: Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am J Pathol. 184:2156–2162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Xi Q and Wu G: Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5:1599–1606. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wen S, Niu Y, Lee SO, Yeh S, Shang Z, Gao H, Li Y, Chou F and Chang C: Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Mol Carcinog. 55:2278–2290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA and Lupu R: Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 21:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zaidi N, Swinnen JV and Smans K: ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 72:3709–3714. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Jia B, Wang Y and Wan S: miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep. 38:3220–3226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Granchi C: ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 157:1276–1291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Icard P and Lincet H: The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat. 29:47–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G and Coppa A: The role of peroxiredoxins in cancer. (Review) Mol Clin Oncol. 6:pp. 139–153. 2017, View Article : Google Scholar : PubMed/NCBI | |
Veal E, Jackson T and Latimer H: Role/s of 'Antioxidant' enzymes in ageing. Subcell Biochem. 90:425–450. 2018. View Article : Google Scholar | |
Hampton MB, Vick KA, Skoko JJ and Neumann CA: Peroxiredoxin involvement in the initiation and progression of human cancer. Antioxid Redox Signal. 28:591–608. 2018. View Article : Google Scholar | |
Kang SW, Lee S and Lee JHS: Cancer-associated function of 2-Cys peroxiredoxin subtypes as a survival gatekeeper. Antioxidants. 7:1612018. View Article : Google Scholar : | |
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT and Furdui CM: Peroxiredoxins in cancer and response to radiation therapies. Antioxidants. 8:112019. View Article : Google Scholar : | |
Kim E-K, Lee SY, Kim Y, Ahn S-M and Jang HH: Peroxiredoxin 1 post-transcriptionally regulates snoRNA expression. Free Radic Biol Med. 141:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dayton TL, Jacks T and Vander Heiden MG: PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17:1721–1730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Méndez-Lucas A, Li X, Hu J, Che L, Song X, Jia J, Wang J, Xie C, Driscoll PC, Tschaharganeh DF, et al: Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer Res. 77:4355–4364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:pp. e5322013, View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Liotta LA and Petricoin EF: Cancer metabolism and mass spectrometry-based proteomics. Cancer Lett. 356A. pp. A176–A183. 2015, View Article : Google Scholar | |
Cheng T-Y, Yang Y-C, Wang H-P, Tien Y-W, Shun C-T, Huang H-Y, Hsiao M and Hua K-T: Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK = 2 protein. Oncogene. 37:1730–1742. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y and Wang K: Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 369:50–57. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou C and Sun B: The prognostic role of the cancer stem cell marker aldehyde dehydrogenase 1 in head and neck squamous cell carcinomas: A meta-analysis. Oral Oncol. 50:1144–1148. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Peng J-J, Gao H, Zhang T, Tan Y and Hu Y-H: ALDH1 expression and the prognosis of lung cancer: A systematic review and meta-analysis. Heart Lung Circ. 24:780–788. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang B, Yang YF, Jin J and Liu YH: Aldehyde dehydrogenase 1 as a predictor of the neoadjuvant chemotherapy response in breast cancer: A meta-analysis. Medicine (Baltimore). 97:pp. e120562018, View Article : Google Scholar | |
Dvorakova M, Nenutil R and Bouchal P: Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics. 11:149–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rao D, Kimler BF, Nothnick WB, Davis MK, Fan F and Tawfik O: Transgelin: A potentially useful diagnostic marker differentially expressed in triple-negative and non-triple-negative breast cancers. Hum Pathol. 46:876–883. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tan VY, Lewis SJ, Adams JC and Martin RM: Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: A systematic review and meta-analysis. BMC Med. 11:522013. View Article : Google Scholar : PubMed/NCBI | |
Iancu-Rubin C and Atweh GF: p27(Kip1) and stathmin share the stage for the first time. Trends Cell Biol. 15:346–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
Belletti B and Baldassarre G: Stathmin: A protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets. 15:1249–1266. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biaoxue R, Hua L, Wenlong G and Shuanying Y: Overexpression of stathmin promotes metastasis and growth of malignant solid tumors: A systemic review and meta-analysis. Oncotarget. 7:78994–79007. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding Z, Bae YH and Roy P: Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adhes Migr. 6:442–449. 2012. View Article : Google Scholar | |
Alkam D, Feldman EZ, Singh A and Kiaei M: Profilin1 biology and its mutation, actin(g) in disease. Cell Mol Life Sci. 74:967–981. 2017. View Article : Google Scholar : | |
Jiang C, Ding Z, Joy M, Chakraborty S, Kim SH, Bottcher R, Condeelis J, Singh S and Roy P: A balanced level of profilin-1 promotes stemness and tumor-initiating potential of breast cancer cells. Cell Cycle. 16:2366–2373. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Shi Z, Zhang L, Zhang H and Zhang Y: Profilin 1, negatively regulated by microRNA-19a-3p, serves as a tumor suppressor in human hepatocellular carcinoma. Pathol Res Pract. 215:499–505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura F, Stossel TP and Hartwig JH: The filamins: Organizers of cell structure and function. Cell Adhes Migr. 5:160–169. 2011. View Article : Google Scholar | |
Savoy RM and Ghosh PM: The dual role of filamin A in cancer: Can't live with (too much of) it, can't live without it. Endocr Relat Cancer. 20:R341–R356. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shao Q-Q, Zhang T-P, Zhao W-J, Liu Z-W, You L, Zhou L, Guo J-C and Zhao Y-P: Filamin A: Insights into its exact role in cancers. Pathol Oncol Res. 22:245–252. 2016. View Article : Google Scholar | |
Wang Y, Liu S, Zhang Y and Yang J: Myosin heavy chain 9: Oncogene or tumor suppressor gene? Med Sci Monit. 25:888–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Desouza-Armstrong M, Gunning PW and Stehn JR: Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken). 74:233–248. 2017. View Article : Google Scholar | |
Ma Y, Xiao T, Xu Q, Shao X and Wang H: iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer. Front Med. 10:278–285. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang J, Xu S, Zhang X, Wang P, Wu H, Xia B, Zhang G, Lei B, Wan L, et al: Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell Physiol Biochem. 45:692–705. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shin H, Kim D and Helfman DM: Tropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells. Oncotarget. 8:95192–95205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mitchell CB, Black B, Sun F, Chrzanowski W, Cooper-White J, Maisonneuve B, Stringer B, Day B, Biro M and O'Neill GM: Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. J Neurooncol. 141:303–313. 2019. View Article : Google Scholar | |
Shishkin S, Eremina L, Pashintseva N, Kovalev L and Kovaleva M: Cofilin-1 and other ADF/Cofilin superfamily members in human malignant cells. Int J Mol Sci. 18:E102016. View Article : Google Scholar : PubMed/NCBI | |
Gasparski AN, Ozarkar S and Beningo KA: Transient mechanical strain promotes the maturation of invadopodia and enhances cancer cell invasion in vitro. J Cell Sci. 130:1965–1978. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsai C-H, Lin L-T, Wang C-Y, Chiu Y-W, Chou Y-T, Chiu S-J, Wang H-E, Liu R-S, Wu C-Y, Chan P-C, et al: Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta. 1852:851–861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Curto M and McClatchey AI: Ezrin...a metastatic detERMinant? Cancer Cell. 5:113–114. 2004. View Article : Google Scholar : PubMed/NCBI | |
Haase G, Gavert N, Brabletz T and Ben-Zé'ev A: The Wnt target gene L1 in colon cancer invasion and metastasis. Cancers (Basel). 8:482016. View Article : Google Scholar | |
Cihan YB: Does ezrin play a predictive role in cancer patients undergoing radiotherapy and/or chemotherapy? Hum Pathol. 80:247–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mierke CT: The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochem Biophys. 53:115–126. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goldmann WH, Auernheimer V, Thievessen I and Fabry B: Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int. 37:397–405. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wang Z, Hao Q, Li W, Xu Y, Zhang J, Zhang W, Wang S, Liu S, Li M, et al: Loss of ERα induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat Commun. 8:144832017. View Article : Google Scholar | |
Colombo E, Alcalay M and Pelicci PG: Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene. 30:2595–2609. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA and Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426:570–574. 2003. View Article : Google Scholar : PubMed/NCBI | |
Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ and Richard DJ: Nucleophosmin: From structure and function to disease development. BMC Mol Biol. 17:192016. View Article : Google Scholar : PubMed/NCBI | |
Werner MT, Zhao C, Zhang Q and Wasik MA: Nucleophosmin- anaplastic lymphoma kinase: The ultimate oncogene and therapeutic target. Blood. 129:823–831. 2017. View Article : Google Scholar | |
Arrigo A-P: Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones. 22:517–529. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie Y-H, Li L-Y, He J-Z, Xu X-E, Liao L-D, Zhang Q, Xie J-J, Xu L-Y and Li E-M: Heat shock protein family B member 1 facilitates ezrin activation to control cell migration in esophageal squamous cell carcinoma. Int J Biochem Cell Biol. 112:79–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H and Hirohashi S: Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 140:1383–1393. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hayashida Y, Honda K, Idogawa M, Ino Y, Ono M, Tsuchida A, Aoki T, Hirohashi S and Yamada T: E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 65:8836–8845. 2005. View Article : Google Scholar : PubMed/NCBI | |
Thomas DG and Robinson DN: The fifth sense: Mechanosensory regulation of alpha-actinin-4 and its relevance for cancer metastasis. Semin Cell Dev Biol. 71:68–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi H, Ito Y, Miura N, Nagamura Y, Nakabo A, Fukami K, Honda K and Sakai R: Actinin-1 and actinin-4 play essential but distinct roles in invadopodia formation by carcinoma cells. Eur J Cell Biol. 96:685–694. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keeling MC, Flores LR, Dodhy AH, Murray ER and Gavara N: Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci Rep. 7:52192017. View Article : Google Scholar : PubMed/NCBI | |
Battaglia RA, Delic S, Herrmann H and Snider NT: Vimentin on the move: new developments in cell migration. F1000 Res 7 (F1000 Faculty Rev). 17962018. | |
Rao J and Li N: Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets. 4:345–354. 2004. View Article : Google Scholar : PubMed/NCBI | |
Piktel E, Levental I, Durnaś B, Janmey PA and Bucki R: Plasma gelsolin: Indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int J Mol Sci. 19:25162018. View Article : Google Scholar : | |
Krishnakumar S, Sundaram A, Abhyankar D, Krishnamurthy V, Shanmugam MP, Gopal L, Sharma T and Biswas J: Major histocompatibility antigens and antigen-processing molecules in retinoblastoma. Cancer. 100:1059–1069. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okayama A, Miyagi Y, Oshita F, Nishi M, Nakamura Y, Nagashima Y, Akimoto K, Ryo A and Hirano H: Proteomic analysis of proteins related to prognosis of lung adenocarcinoma. J Proteome Res. 13:4686–4694. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ryan D, Carberry S, Murphy AC, Lindner AU, Fay J, Hector S, McCawley N, Bacon O, Concannon CG, Kay EW, et al: Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med. 14:1962016. View Article : Google Scholar : PubMed/NCBI | |
Vogiatzi F, Brandt DT, Schneikert J, Fuchs J, Grikscheit K, Wanzel M, Pavlakis E, Charles JP, Timofeev O, Nist A, et al: Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc Natl Acad Sci USA. 113:E8433–E8442. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ma D, Wang X, Fang J, Liu X, Song J, Li X, Ren X, Li Q, Li Q, et al: Calnexin impairs the antitumor immunity of CD4+ and CD8+ T cells. Cancer Immunol Res. 7:123–135. 2018. View Article : Google Scholar | |
Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L and Zimmermann R: Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci. 66:1556–1569. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Lee J, Liem D and Ping P: HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 618:14–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herroon MK, Rajagurubandara E, Diedrich JD, Heath EI and Podgorski I: Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep. 8:402018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Do KC, Saxton B, Leng S, Filipczak P, Tessema M, Belinsky SA and Lin Y: Inhibition of the hexosamine biosynthesis pathway potentiates cisplatin cytotoxicity by decreasing BiP expression in non-small-cell lung cancer cells. Mol Carcinog. 58:1046–1055. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sauk JJ, Nikitakis N and Siavash H: Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Front Biosci. 10:107–118. 2005. View Article : Google Scholar | |
Duarte BDP and Bonatto D: The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J Cancer Res Clin Oncol. 144:2319–2328. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vatolin S, Phillips JG, Jha BK, Govindgari S, Hu J, Grabowski D, Parker Y, Lindner DJ, Zhong F, Distelhorst CW, et al: Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer Res. 76:3340–3350. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuo T-F, Chen T-Y, Jiang S-T, Chen K-W, Chiang Y-M, Hsu Y-J, Liu Y-J, Chen H-M, Yokoyama KK, Tsai K-C, et al: Protein disulfide isomerase a4 acts as a novel regulator of cancer growth through the procaspase pathway. Oncogene. 36:5484–5496. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A and Spisek R: Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett. 193:25–34. 2018. View Article : Google Scholar | |
Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, Li Y, Zhang J and Ding S: Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 8:pp. e31472017, View Article : Google Scholar : PubMed/NCBI | |
Schcolnik-Cabrera A, Oldak B, Juárez M, Cruz-Rivera M, Flisser A and Mendlovic F: Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis. 24:245–255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Jin G, Jin H, Wang N, Luo Q, Zhang Y, Gao D, Jiang K, Gu D, Shen Q, et al: Clusterin facilitates metastasis by EIF3I/Akt/MMP13 signaling in hepatocellular carcinoma. Oncotarget. 6:2903–2916. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shapiro B, Tocci P, Haase G, Gavert N and Ben-Ze'ev A: Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget. 6:34389–34401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Men C, Xu Y, Zhao K, Luo L, Dong D and Yu Q: Clusterin promotes growth and invasion of clear cell renal carcinoma cell by upregulation of S100A4 expression. Cancer Biomark. 21:915–923. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J and Townsend DM: The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med. 51:299–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, He W, Yang G, Wang J, Wang Z, Nesland JM, Holm R and Suo Z: Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma. BMC Cancer. 10:3522010. View Article : Google Scholar : PubMed/NCBI | |
Zannis-Hadjopoulos M, Yahyaoui W and Callejo M: 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci. 33:44–50. 2008. View Article : Google Scholar | |
Bortner JD Jr, Das A, Umstead TM, Freeman WM, Somiari R, Aliaga C, Phelps DS and El-Bayoumy K: Down-regulation of 14-3-3 isoforms and annexin A5 proteins in lung adenocarcinoma induced by the tobacco-specific nitrosamine NNK in the A/J mouse revealed by proteomic analysis. J Proteome Res. 8:4050–4061. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leal MF, Calcagno DQ, Demachki S, Assumpção PP, Chammas R, Burbano RR and Smith MA: Clinical implication of 14-3-3 epsilon expression in gastric cancer. World J Gastroenterol. 18:1531–1537. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X and Zhang M: Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl. 11:3–4. 2017. View Article : Google Scholar | |
Bavelloni A, Piazzi M, Raffini M, Faenza I and Blalock WL: Prohibitin 2: At a communications crossroads. IUBMB Life. 67:239–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mishra S and Nyomba BG: Prohibitin - At the crossroads of obesity-linked diabetes and cancer. Exp Biol Med (Maywood). 242:1170–1177. 2017. View Article : Google Scholar | |
Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, Kawauchi A, Yoshiki T and Nakata S: Prohibitin-2 is a novel regulator of p21WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun. 496:218–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Ai H, Li K, Yao X, Zhu W, Liu L, Yu C, Song Z, Bao Y, Huang Y, et al: Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep. 8:14792018. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Gao Y, Yuan H, Cao J, Jia B, Li M, Peng Y, Du X, Zhang J and Shi J: Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration. Int J Mol Med. 41:1147–1155. 2018. | |
Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, Désaubry L and Song Z: PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 16:419–434. 2020. View Article : Google Scholar : | |
Jubran R, Kocsis J, Garam N, Maláti É, Gombos T, Barabás L, Gráf L, Prohászka Z and Fishelson Z: Circulating mitochondrial stress 70 protein/mortalin and cytosolic Hsp70 in blood: Risk indicators in colorectal cancer. Int J Cancer. 141:2329–2335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cruz IN, Coley HM, Kramer HB, Madhuri TK, Safuwan NAM, Angelino AR and Yang M: Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics. 14:35–51. 2017. View Article : Google Scholar : | |
Niu X, Su L, Qi S, Gao Z, Zhang Q and Zhang S: GRP75 modulates oncogenic Dbl-driven endocytosis derailed via the CHIP-mediated ubiquitin degradation pathway. Cell Death Dis. 9:9712018. View Article : Google Scholar : PubMed/NCBI | |
Chang HJ, Lee MR, Hong S-H, Yoo BC, Shin Y-K, Jeong JY, Lim S-B, Choi HS, Jeong S-Y and Park J-G: Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci. 98:1184–1191. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kühlbrandt W: Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 88:515–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhan X, Li M, Li G, Zhang P, Xiao Z, Shao M, Peng F, Hu R and Chen Z: Mitochondrial proteomics of nasopha-ryngeal carcinoma metastasis. BMC Med Genomics. 5:622012. View Article : Google Scholar | |
Chen W-L, Kuo K-T, Chou T-Y, Chen C-L, Wang C-H, Wei Y-H and Wang L-S: The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: Association with migration, invasion and prediction of distant metastasis. BMC Cancer. 12:2732012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu L, Zhang X, Zhao H, Xu H, Wei Y, Jiang H, Xie C, Zhou Y and Zhou F: Downregulation of mitochondrial single stranded DNA binding protein (SSBP1) induces mitochondrial dysfunction and increases the radiosensitivity in non-small cell lung cancer cells. J Cancer. 8:1400–1409. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ and Croft LV: Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem. 27:1901–1921. 2020. View Article : Google Scholar | |
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R and Richard DJ: Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol. 86:121–128. 2019. View Article : Google Scholar | |
Bozlu M, Orhan D, Baltaci S, Yaman O, Elhan AH, Tulunay O and Müftüoğlu YZ: The prognostic value of proliferating cell nuclear antigen, Ki-67 and nucleolar organizer region in transitional cell carcinoma of the bladder. Int Urol Nephrol. 33:59–66. 2002. View Article : Google Scholar : PubMed/NCBI | |
Maeda K, Chung Y-S, Onoda N, Ogawa M, Kato Y, Nitta A, Arimoto Y, Kondo Y, Arakawa T and Sowa M: Association of tumor cell proliferation with lymph node metastasis in early gastric cancer. Oncology. 53:1–5. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Yang J, Li J and Song J: The clinical utility of the proliferating cell nuclear antigen expression in patients with hepatocellular carcinoma. Tumour Biol. 37:7405–7412. 2016. View Article : Google Scholar | |
Wang L, Kong W, Liu B and Zhang X: Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer. Biomed Pharmacother. 104:595–602. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kato K, Kawashiri S, Yoshizawa K, Kitahara H, Okamune A, Sugiura S, Noguchi N and Yamamoto E: Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma: Correlation with clinicopathological features and prognosis. J Oral Pathol Med. 40:693–698. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dahl JA and Collas P: Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells. 25:1037–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan AD and Venkitaraman AR: A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One. 8:pp. e618932013, View Article : Google Scholar : PubMed/NCBI | |
Sakthivel KM and Sehgal P: A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev. 10:3092016.PubMed/NCBI | |
Kim J-K, Louhghalam A, Lee G, Schafer BW, Wirtz D and Kim D-H: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun. 8:21232017. View Article : Google Scholar : PubMed/NCBI | |
Taheri F, Isbilir B, Müller G, Krieger JW, Chirico G, Langowski J and Tóth K: Random motion of chromatin is influenced by lamin A interconnections. Biophys J. 114:2465–2472. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zuo L, Zhao H, Yang R, Wang L, Ma H, Xu X, Zhou P and Kong L: Lamin A/C might be involved in the EMT signalling pathway. Gene. 663:51–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S and Vaidya MM: Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci. 44:332019. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Alsharif S, Fallatah A and Chung BM: Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and nestin. Cells. 8:4972019. View Article : Google Scholar : | |
Awe JA, Saranchuk J, Drachenberg D and Mai S: Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urol Oncol. 35:300–309. 2017. View Article : Google Scholar : PubMed/NCBI | |
Erlandsson A, Forssell-Aronsson E, Seidal T and Bernhardt P: Binding of TS1, an anti-keratin 8 antibody, in small-cell lung cancer after 177Lu-DOTA-Tyr3-octreotate treatment: A histological study in xenografted mice. EJNMMI Res. 1:192011. View Article : Google Scholar | |
Sawant S, Vaidya M, Chaukar D, Gangadaran P, Singh AK, Rajadhyax S, Kannan S, Kane S, Pagare S and Kannan R: Clinicopathological features and prognostic implications of loss of K5 and gain of K1, K8 and K18 in oral potentially malignant lesions and squamous cell carcinomas: An immunohistochemical analysis. Edorium J Tumor Biol. 1:1–22. 2014. | |
Alam H, Kundu ST, Dalal SN and Vaidya MM: Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J Cell Sci. 124:2096–2106. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun L and Fang J: Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci. 73:4493–4515. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou B-R and Bai Y: Chromatin structures condensed by linker histones. Essays Biochem. 63:75–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, et al: Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol. 15:872–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tzivion G, Gupta VS, Kaplun L and Balan V: 14-3-3 proteins as potential oncogenes. Semin Cancer Biol. 16:203–213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kurpińska A, Suraj J, Bonar E, Zakrzewska A, Stojak M, Sternak M, Jasztal A and Walczak M: Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol. 107:129–140. 2019. View Article : Google Scholar | |
Kawahara T, Hotta N, Ozawa Y, Kato S, Kano K, Yokoyama Y, Nagino M, Takahashi T and Yanagisawa K: Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex. PLoS One. 8:e796542013. View Article : Google Scholar : PubMed/NCBI | |
Matsunuma R, Chan DW, Kim B-J, Singh P, Han A, Saltzman AB, Cheng C, Lei JT, Wang J, Roberto da Silva L, et al: DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci USA. 115:E11978–E11987. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Jiang Y, Xie D, Liu M, Song N, Zhu J, Fan J and Zhu C: Inhibition of cell-adhesion protein DPYSL3 promotes metastasis of lung cancer. Respir Res. 19:412018. View Article : Google Scholar : PubMed/NCBI | |
Zarogoulidis P, Tsakiridis K, Karapantzou C, Lampaki S, Kioumis I, Pitsiou G, Papaiwannou A, Hohenforst-Schmidt W, Huang H, Kesisis G, et al: Use of proteins as biomarkers and their role in carcinogenesis. J Cancer. 6:9–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Frauchiger AL, Dummer R and Mangana J: Serum S100B levels in melanoma. Methods Mol Biol. 1929:691–700. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Cheng J, You J, Yan B, Liu H and Li F: S100B promotes chemoresistance in ovarian cancer stem cells by regulating p53. Oncol Rep. 40:1574–1582. 2018.PubMed/NCBI | |
Darlix A, Lamy P-J, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, Thezenas S and Jacot W: Serum HER2 extra-cellular domain, S100β and CA 15-3 levels are independent prognostic factors in metastatic breast cancer patients. BMC Cancer. 16:4282016. View Article : Google Scholar | |
Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, Liu H, Zhou H, Su Y, Yang Y, et al: S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett. 439:91–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, Zhang C, Yoder S, Johnson J and Damaghi M: Integrative analysis of breast cancer cells reveals an epithelial-mesenchymal transition role in adaptation to acidic microenvironment. Front Oncol. 10:3042020. View Article : Google Scholar : PubMed/NCBI | |
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM and Sotiropoulou G: Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol. 13:2329–2343. 2019. View Article : Google Scholar : PubMed/NCBI | |
Seguella L, Capuano R, Pesce M, Annunziata G, Pesce M, de Conno B, Sarnelli G, Aurino L and Esposito G: S100B protein stimulates proliferation and angiogenic mediators release through RAGE/pAkt/mTOR pathway in human colon adenocarcinoma Caco-2 cells. Int J Mol Sci. 20:32402019. View Article : Google Scholar : | |
Méndez O, Peg V, Salvans C, Pujals M, Fernández Y, Abasolo I, Pérez J, Matres A, Valeri M, Gregori J, et al: Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin Cancer Res. 24:6367–6382. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu X-J, Chen Y-Y, Gong C-C and Pei D-S: The role of high-mobility group protein box 1 in lung cancer. J Cell Biochem. 119:6354–6365. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma AK, Sharma VR, Gupta GK, Ashraf GM and Kamal MA: Advanced glycation end products (AGEs), glutathione and breast cancer: Factors, mechanism and therapeutic interventions. Curr Drug Metab. 20:65–71. 2019. View Article : Google Scholar | |
Schröter D and Höhn A: Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Curr Pharm Des. 24:5245–5251. 2018. View Article : Google Scholar | |
Palanissami G and Paul SFD: RAGE and its ligands: Molecular interplay between glycation, inflammation, and hallmarks of cancer - a review. Horm Cancer. 9:295–325. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, Godovikova T, Silnikov V and Moinuddin: AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 49:44–55. 2018. View Article : Google Scholar | |
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M and Biswal S: Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 62:5196–5203. 2002.PubMed/NCBI | |
Sova M and Saso L: Design and development of Nrf2 modulators for cancer chemoprevention and therapy: A review. Drug Des Devel Ther. 12:3181–3197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taguchi K and Yamamoto M: The KEAP1-NRF2 system in cancer. Front Oncol. 7:852017. View Article : Google Scholar : PubMed/NCBI | |
Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, et al: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 178:316–329e18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, et al: BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 178:330–345e22. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ryoo IG, Choi BH, Ku S-K and Kwak M-K: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 17:246–258. 2018. View Article : Google Scholar : PubMed/NCBI |