E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions
- Authors:
- Perla Yaceli Uc
- Jael Miranda
- Arturo Raya‑Sandino
- Lourdes Alarcón
- María Luisa Roldán
- Rodolfo Ocadiz‑Delgado
- Enoc Mariano Cortés‑Malagón
- Bibiana Chávez‑Munguía
- Georgina Ramírez
- René Asomoza
- Liora Shoshani
- Patricio Gariglio
- Lorenza González‑Mariscal
-
Affiliations: Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico, Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico, Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico, Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico, Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico - Published online on: July 29, 2020 https://doi.org/10.3892/ijo.2020.5105
- Pages: 905-924
-
Copyright: © Uc et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, Mariotto A, Lake AJ, Wilson R, Sherman RL, et al: Annual Report to the Nation on the Status of Cancer, 1975-2014 Featuring Survival. J Natl Cancer Inst. 109:1092017. View Article : Google Scholar | |
Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al HPV PATRICIA Study Group: Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): Final analysis of a double-blind, randomised study in young women. Lancet. 374:301–314. 2009. View Article : Google Scholar : PubMed/NCBI | |
Muñoz JP, Carrillo-Beltrán D, Aedo-Aguilera V, Calaf GM, León O, Maldonado E, Tapia JC, Boccardo E, Ozbun MA and Aguayo F: Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Front Microbiol. 9:30222018. View Article : Google Scholar | |
Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, Shah KV, Meijer CJ and Bosch FX; International Agency for Research on Cancer: Multicentric Cervical Cancer Study Group: Role of parity and human papillomavirus in cervical cancer: The IARC multicentric case-control study. Lancet. 359:1093–1101. 2002. View Article : Google Scholar | |
Berraho M, Amarti-Riffi A, El-Mzibri M, Bezad R, Benjaafar N, Benideer A, Matar N, Qmichou Z, Abda N, Attaleb M, et al: HPV and cofactors for invasive cervical cancer in Morocco: A multicentre case-control study. BMC Cancer. 17:4352017. View Article : Google Scholar : PubMed/NCBI | |
Chung SH, Franceschi S and Lambert PF: Estrogen and ERalpha: Culprits in cervical cancer? Trends Endocrinol Metab. 21:504–511. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asthana S, Busa V and Labani S: Oral contraceptives use and risk of cervical cancer-A systematic review & meta-analysis. Eur J Obstet Gynecol Reprod Biol. 247:163–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mapanga W, Singh E, Feresu SA and Girdler-Brown B: Treatment of pre- and confirmed cervical cancer in HIV-seropositive women from developing countries: A systematic review. Syst Rev. 9:792020. View Article : Google Scholar : PubMed/NCBI | |
Du GH, Wang JK, Richards JR and Wang JJ: Genetic poly-morphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol. 66:154–161. 2019. View Article : Google Scholar | |
Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, Yang T, Zhao J, Song L and Yang X: Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim-3 and galectin-9, in cervical cancer. Oncol Rep. 42:2655–2669. 2019.PubMed/NCBI | |
List HJ, Patzel V, Zeidler U, Schopen A, Rühl G, Stollwerk J and Klock G: Methylation sensitivity of the enhancer from the human papillomavirus type 16. J Biol Chem. 269:11902–11911. 1994.PubMed/NCBI | |
Chih HJ, Lee AH, Colville L, Binns CW and Xu D: A review of dietary prevention of human papillomavirus-related infection of the cervix and cervical intraepithelial neoplasia. Nutr Cancer. 65:317–328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghosh C, Baker JA, Moysich KB, Rivera R, Brasure JR and McCann SE: Dietary intakes of selected nutrients and food groups and risk of cervical cancer. Nutr Cancer. 60:331–341. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song S, Liem A, Miller JA and Lambert PF: Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology. 267:141–150. 2000. View Article : Google Scholar : PubMed/NCBI | |
Werness BA, Levine AJ and Howley PM: Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 248:76–79. 1990. View Article : Google Scholar : PubMed/NCBI | |
Dyson N, Howley PM, Münger K and Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 243:934–937. 1989. View Article : Google Scholar : PubMed/NCBI | |
Riley RR, Duensing S, Brake T, Münger K, Lambert PF and Arbeit JM: Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 63:4862–4871. 2003.PubMed/NCBI | |
Brake T, Connor JP, Petereit DG and Lambert PF: Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: Identification of mini-chromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res. 63:8173–8180. 2003.PubMed/NCBI | |
Arbeit JM, Howley PM and Hanahan D: Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA. 93:2930–2935. 1996. View Article : Google Scholar : PubMed/NCBI | |
Brake T and Lambert PF: Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci USA. 102:2490–2495. 2005. View Article : Google Scholar : PubMed/NCBI | |
González-Mariscal L, Díaz-Coránguez M and Quirós M: Regulation of tight junctions for therapeutic advanges. Cancer Metastasis-Biology and Treatment. Martin TA and Jiang WG: Springer; Dondrecht: pp. 197–246. 2013, View Article : Google Scholar | |
González-Mariscal L, Lechuga S and Garay E: Role of tight junctions in cell proliferation and cancer. Prog Histochem Cytochem. 42:1–57. 2007. View Article : Google Scholar : PubMed/NCBI | |
Birks DK, Kleinschmidt-DeMasters BK, Donson AM, Barton VN, McNatt SA, Foreman NK and Handler MH: Claudin 6 is a positive marker for atypical teratoid/rhabdoid tumors. Brain Pathol. 20:140–150. 2010. View Article : Google Scholar | |
Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A, Celik H, McCormick M, Munguía-Moreno JA, Ibarra-Sierra E, et al: Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology. 447:155–165. 2013. View Article : Google Scholar : PubMed/NCBI | |
Seo HW, Rengaraj D, Choi JW, Ahn SE, Song YS, Song G and Han JY: Claudin 10 is a glandular epithelial marker in the chicken model as human epithelial ovarian cancer. Int J Gynecol Cancer. 20:1465–1473. 2010. | |
Huang GW, Ding X, Chen SL and Zeng L: Expression of claudin 10 protein in hepatocellular carcinoma: Impact on survival. J Cancer Res Clin Oncol. 137:1213–1218. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xiang J, Bhandari A, Guan Y, Xia E, Zhou X, Wang Y and Wang O: CLDN10 is Associated with Papillary Thyroid Cancer Progression. J Cancer. 9:4712–4717. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bulut G, Fallen S, Beauchamp EM, Drebing LE, Sun J, Berry DL, Kallakury B, Crum CP, Toretsky JA, Schlegel R, et al: Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLoS One. 6:e272432011. View Article : Google Scholar : PubMed/NCBI | |
González-Mariscal L, Garay E and Quirós M: Identification of claudins by western blot and immunofluorescence in different cell lines and tissues. Methods Mol Biol. 762:213–231. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee C and Laimins LA: The differentiation-dependent life cycle of human papillomaviruses in keratinocytes. The Papillomaviruses. Garcea RL and DiMaio D: Springer; US, Boston, MA: pp. 45–67. 2007, View Article : Google Scholar | |
Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M and Müller D: Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci. 122:1507–1517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miranda J, Martín-Tapia D, Valdespino-Vázquez Y, Alarcón L, Espejel-Nuñez A, Guzmán-Huerta M, Muñoz-Medina JE, Shibayama M, Chávez-Munguía B, Estrada-Gutiérrez G, et al: Syncytiotrophoblast of Placentae from Women with Zika Virus Infection Has Altered Tight Junction Protein Expression and Increased Paracellular Permeability. Cells. 8:82019. View Article : Google Scholar | |
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L and González-Mariscal L: The organophosphate pesticide methami-dophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol. 360:257–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez J, García-Villa E, Ocadiz-Delgado R, Cortés-Malagón EM, Vázquez J, Roman-Rosales A, Alvarez-Rios E, Celik H, Romano MC, Üren A, et al: Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice. Mol Cell Biochem. 408:261–272. 2015. View Article : Google Scholar : PubMed/NCBI | |
McFarland DC: Preparation of pure cell cultures by cloning. Methods Cell Sci. 22:63–66. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Mariscal L, Chávez de Ramírez B and Cereijido M: Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol. 86:113–125. 1985. View Article : Google Scholar : PubMed/NCBI | |
Her nández-Monge J, Ga ray E, Raya-Sandino A, Vargas-Sierra O, Díaz-Chávez J, Popoca-Cuaya M, Lambert PF, González-Mariscal L and Gariglio P: Papillomavirus E6 oncoprotein up-regulates occludin and ZO-2 expression in ovariectomized mice epidermis. Exp Cell Res. 319:2588–2603. 2013. View Article : Google Scholar | |
Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B and Javier RT: Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci. 118:4283–4293. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ramirez L, Betanzos A, Raya-Sandino A, González-Mariscal L and Del Angel RM: Dengue virus enters and exits epithelial cells through both apical and basolateral surfaces and perturbs the apical junctional complex. Virus Res. 258:39–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nava P, López S, Arias CF, Islas S and González-Mariscal L: The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci. 117:5509–5519. 2004. View Article : Google Scholar : PubMed/NCBI | |
Svensson L, Finlay BB, Bass D, von Bonsdorff CH and Greenberg HB: Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J Virol. 65:4190–4197. 1991. View Article : Google Scholar : PubMed/NCBI | |
Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD and Fromm M: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 115:4969–4976. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu AS, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M and Coalson RD: Molecular basis for cation selectivity in claudin-2-based paracellular pores: Identification of an electrostatic interaction site. J Gen Physiol. 133:111–127. 2009. View Article : Google Scholar : | |
Van Itallie CM, Fanning AS and Anderson JM: Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol. 285:F1078–F1084. 2003. View Article : Google Scholar : PubMed/NCBI | |
Furuse M, Furuse K, Sasaki H and Tsukita S: Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 153:263–272. 2001. View Article : Google Scholar : PubMed/NCBI | |
Van Itallie C, Rahner C and Anderson JM: Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest. 107:1319–1327. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Renigunta A, Yang J and Waldegger S: Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci USA. 107:18010–18015. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chaicharoenaudomrung N, Kunhorm P and Noisa P: Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells. 11:1065–1083. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tavares S, Vieira AF, Taubenberger AV, Araújo M, Martins NP, Brás-Pereira C, Polónia A, Herbig M, Barreto C, Otto O, et al: Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun. 8:152372017. View Article : Google Scholar : PubMed/NCBI | |
Herber R, Liem A, Pitot H and Lambert PF: Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol. 70:1873–1881. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sobel G, Szabó I, Páska C, Kiss A, Kovalszky I, Kádár A, Paulin F and Schaff Z: Changes of cell adhesion and extracellular matrix (ECM) components in cervical intraepithelial neoplasia. Pathol Oncol Res. 11:26–31. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Miller C, Mosher R, Zhao X, Deeds J, Morrissey M, Bryant B, Yang D, Meyer R, Cronin F, et al: Identification of cervical cancer markers by cDNA and tissue microarrays. Cancer Res. 63:1927–1935. 2003.PubMed/NCBI | |
Zinner B, Gyöngyösi B, Babarczi E, Kiss A and Sobel G: Claudin 1 expression characterizes human uterine cervical reserve cells. J Histochem Cytochem. 61:880–888. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sobel G, Páska C, Szabó I, Kiss A, Kádár A and Schaff Z: Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive carcinoma. Hum Pathol. 36:162–169. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ersoz S, Mungan S, Cobanoglu U, Turgutalp H and Ozoran Y: Prognostic importance of Claudin-1 and Claudin-4 expression in colon carcinomas. Pathol Res Pract. 207:285–289. 2011. View Article : Google Scholar : PubMed/NCBI | |
Süren D, Yıldırım M, Kaya V, Alikanoğlu AS, Bülbüller N, Yıldız M and Sezer C: Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma. Med Sci Monit. 20:1255–1262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jung H, Jun KH, Jung JH, Chin HM and Park WB: The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res. 167:e185–e191. 2011. View Article : Google Scholar | |
Wang H and Yang X: The expression patterns of tight junction protein claudin-1, -3, and -4 in human gastric neoplasms and adjacent non-neoplastic tissues. Int J Clin Exp Pathol. 8:881–887. 2015.PubMed/NCBI | |
Tokuhara Y, Morinishi T, Matsunaga T, Ohsaki H, Kushida Y, Haba R and Hirakawa E: Claudin-1, but not claudin-4, exhibits differential expression patterns between well- to moderately-differentiated and poorly-differentiated gastric adenocarcinoma. Oncol Lett. 10:93–98. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lourenço SV, Coutinho-Camillo CM, Buim ME, Pereira CM, Carvalho AL, Kowalski LP and Soares FA: Oral squamous cell carcinoma: Status of tight junction claudins in the different histopathological patterns and relationship with clinical parameters. A tissue-microarray-based study of 136 cases. J Clin Pathol. 63:609–614. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tzelepi VN, Tsamandas AC, Vlotinou HD, Vagianos CE and Scopa CD: Tight junctions in thyroid carcinogenesis: Diverse expression of claudin-1, claudin-4, claudin-7 and occludin in thyroid neoplasms. Mod Pathol. 21:22–30. 2008. View Article : Google Scholar | |
Székely E, Törzsök P, Riesz P, Korompay A, Fintha A, Székely T, Lotz G, Nyirády P, Romics I, Tímár J, et al: Expression of claudins and their prognostic significance in noninvasive urothelial neoplasms of the human urinary bladder. J Histochem Cytochem. 59:932–941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Resnick MB, Konkin T, Routhier J, Sabo E and Pricolo VE: Claudin-1 is a strong prognostic indicator in stage II colonic cancer: A tissue microarray study. Mod Pathol. 18:511–518. 2005. View Article : Google Scholar | |
Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H and Hirakawa K: Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer. Anticancer Res. 33:3301–3306. 2013.PubMed/NCBI | |
Jiang L, Yang L, Huang H, Liu BY and Zu G: Prognostic and clinical significance of claudin-1 in colorectal cancer: A systemic review and meta-analysis. Int J Surg. 39:214–220. 2017. View Article : Google Scholar : PubMed/NCBI | |
Higashi Y, Suzuki S, Sakaguchi T, Nakamura T, Baba S, Reinecker HC, Nakamura S and Konno H: Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res. 139:68–76. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bouchagier KA, Assimakopoulos SF, Karavias DD, Maroulis I, Tzelepi V, Kalofonos H, Karavias DD, Kardamakis D, Scopa CD and Tsamandas AC: Expression of claudins-1, -4, -5, -7 and occludin in hepatocellular carcinoma and their relation with classic clinicopathological features and patients' survival. In Vivo. 28:315–326. 2014.PubMed/NCBI | |
Sheehan GM, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr and Ross JS: Loss of claudins-1 and -7 and expression of claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas. Hum Pathol. 38:564–569. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chao YC, Pan SH, Yang SC, Yu SL, Che TF, Lin CW, Tsai MS, Chang GC, Wu CH, Wu YY, et al: Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adeno-carcinoma. Am J Respir Crit Care Med. 179:123–133. 2009. View Article : Google Scholar | |
Moldvay J, Fábián K, Jäckel M, Németh Z, Bogos K, Furák J, Tiszlavicz L, Fillinger J, Döme B and Schaff Z: Claudin-1 Protein Expression Is a Good Prognostic Factor in Non-Small Cell Lung Cancer, but only in Squamous Cell Carcinoma Cases. Pathol Oncol Res. 23:151–156. 2017. View Article : Google Scholar | |
Blanchard AA, Skliris GP, Watson PH, Murphy LC, Penner C, Tomes L, Young TL, Leygue E and Myal Y: Claudins 1, 3 and 4 protein expression in ER negative breast cancer correlates with markers of the basal phenotype. Virchows Arch. 454:647–656. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kulka J, Szász AM, Németh Z, Madaras L, Schaff Z, Molnár IA and Tokés AM: Expression of tight junction protein claudin-4 in basal-like breast carcinomas. Pathol Oncol Res. 15:59–64. 2009. View Article : Google Scholar | |
Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N and Xu B: A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS One. 9:e1127652014. View Article : Google Scholar : PubMed/NCBI | |
Morohashi S, Kusumi T, Sato F, Odagiri H, Chiba H, Yoshihara S, Hakamada K, Sasaki M and Kijima H: Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int J Mol Med. 20:139–143. 2007.PubMed/NCBI | |
Szasz AM, Tokes AM, Micsinai M, Krenacs T, Jakab C, Lukacs L, Nemeth Z, Baranyai Z, Dede K, Madaras L, et al: Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis. 28:55–63. 2011. View Article : Google Scholar | |
Steinau M, Rajeevan MS, Lee DR, Ruffin MT, Horowitz IR, Flowers LC, Tadros T, Birdsong G, Husain M, Kmak DC, et al: Evaluation of RNA markers for early detection of cervical neoplasia in exfoliated cervical cells. Cancer Epidemiol Biomarkers Prev. 16:295–301. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vázquez-Ortíz G, Ciudad CJ, Piña P, Vazquez K, Hidalgo A, Alatorre B, Garcia JA, Salamanca F, Peralta-Rodriguez R, Rangel A, et al: Gene identification by cDNA arrays in HPV-positive cervical cancer. Arch Med Res. 36:448–458. 2005. View Article : Google Scholar : PubMed/NCBI | |
Benczik M, Galamb Á, Koiss R, Kovács A, Járay B, Székely T, Szekerczés T, Schaff Z, Sobel G and Jeney C: Claudin-1 as a Biomarker of Cervical Cytology and Histology. Pathol Oncol Res. 22:179–188. 2016. View Article : Google Scholar | |
Hoellen F, Waldmann A, Banz-Jansen C, Holtrich U, Karn T, Oberländer M, Habermann JK, Hörmann M, Köster F, Ribbat-Idel J, et al: Claudin-1 expression in cervical cancer. Mol Clin Oncol. 7:880–884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gröne J, Weber B, Staub E, Heinze M, Klaman I, Pilarsky C, Hermann K, Castanos-Velez E, Röpcke S, Mann B, et al: Differential expression of genes encoding tight junction proteins in colorectal cancer: Frequent dysregulation of claudin-1, -8 and -12. Int J Colorectal Dis. 22:651–659. 2007. View Article : Google Scholar | |
Kinugasa T, Akagi Y, Yoshida T, Ryu Y, Shiratuchi I, Ishibashi N and Shirouzu K: Increased claudin-1 protein expression contributes to tumorigenesis in ulcerative colitis-associated colorectal cancer. Anticancer Res. 30:3181–3186. 2010.PubMed/NCBI | |
Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK and Beauchamp RD: Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 115:1765–1776. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aro K, Rosa LE, Bello IO, Soini Y, Mäkitie AA, Salo T and Leivo I: Expression pattern of claudins 1 and 3-an auxiliary tool in predicting behavior of mucoepidermoid carcinoma of salivary gland origin. Virchows Arch. 458:341–348. 2011. View Article : Google Scholar | |
Németh J, Németh Z, Tátrai P, Péter I, Somorácz A, Szász AM, Kiss A and Schaff Z: High expression of claudin-1 protein in papillary thyroid tumor and its regional lymph node metastasis. Pathol Oncol Res. 16:19–27. 2010. View Article : Google Scholar | |
Gyorffy H: Study of claudins and prognostic factors in some gastrointestinal diseases. Magy Onkol. 53:377–383. 2009.In Hungarian. | |
Montgomery E, Mamelak AJ, Gibson M, Maitra A, Sheikh S, Amr SS, Yang S, Brock M, Forastiere A, Zhang S, et al: Overexpression of claudin proteins in esophageal adenocar-cinoma and its precursor lesions. Appl Immunohistochem Mol Morphol. 14:24–30. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li W, Dong Q, Li L, Zhang Z, Cai X and Pan X: Prognostic significance of claudin-1 and cyclin B1 protein expression in patients with hypopharyngeal squamous cell carcinoma. Oncol Lett. 11:2995–3002. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li WJ, Zhang ZL, Yu XM, Cai XL, Pan XL and Yang XY: Expression of claudin-1 and its relationship with lymphatic microvessel generation in hypopharyngeal squamous cell carcinoma. Genet Mol Res. 14:11814–11826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bello IO, Vilen ST, Niinimaa A, Kantola S, Soini Y and Salo T: Expression of claudins 1, 4, 5, and 7 and occludin, and relationship with prognosis in squamous cell carcinoma of the tongue. Hum Pathol. 39:1212–1220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Babkair H, Yamazaki M, Uddin MS, Maruyama S, Abé T, Essa A, Sumita Y, Ahsan MS, Swelam W, Cheng J, et al: Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma. Hum Pathol. 57:51–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sappayatosok K and Phattarataratip E: Overexpression of Claudin-1 is Associated with Advanced Clinical Stage and Invasive Pathologic Characteristics of Oral Squamous Cell Carcinoma. Head Neck Pathol. 9:173–180. 2015. View Article : Google Scholar : | |
Weeraratna AT, Becker D, Carr KM, Duray PH, Rosenblatt KP, Yang S, Chen Y, Bittner M, Strausberg RL, Riggins GJ, et al: Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene. 23:2264–2274. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leotlela PD, Wade MS, Duray PH, Rhode MJ, Brown HF, Rosenthal DT, Dissanayake SK, Earley R, Indig FE, Nickoloff BJ, et al: Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene. 26:3846–3856. 2007. View Article : Google Scholar | |
Shiozaki A, Shimizu H, Ichikawa D, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, et al: Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells. World J Gastroenterol. 20:17863–17876. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fritzsche FR, Oelrich B, Johannsen M, Kristiansen I, Moch H, Jung K and Kristiansen G: Claudin-1 protein expression is a prognostic marker of patient survival in renal cell carcinomas. Clin Cancer Res. 14:7035–7042. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Li J, Qu Y, Zhang J, Zhang L, Chen X, Liu B and Zhu Z: The expression of claudin 1 correlates with β-catenin and is a prognostic factor of poor outcome in gastric cancer. Int J Oncol. 44:1293–1301. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun BS, Yao YQ, Pei BX, Zhang ZF and Wang CL: Claudin-1 correlates with poor prognosis in lung adenocarcinoma. Thorac Cancer. 7:556–563. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZF, Pei BX, Wang AL, Zhang LM, Sun BS, Jiang RC and Wang CL: Expressions of CLDN1 and insulin-like growth factor 2 are associated with poor prognosis in stage N2 non-small cell lung cancer. Chin Med J (Engl). 126:3668–3674. 2013. | |
Hahn-Strömberg V, Askari S, Ahmad A, Befekadu R and Nilsson TK: Expression of claudin 1, claudin 4, and claudin 7 in colorectal cancer and its relation with CLDN DNA methylation patterns. Tumour Biol. 39:10104283176975692017. View Article : Google Scholar : PubMed/NCBI | |
Zwanziger D, Badziong J, Ting S, Moeller LC, Schmid KW, Siebolts U, Wickenhauser C, Dralle H and Fuehrer D: The impact of CLAUDIN-1 on follicular thyroid carcinoma aggressiveness. Endocr Relat Cancer. 22:819–830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, Wang X and Li N: Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto's thyroiditis. Int J Clin Exp Pathol. 7:7999–8007. 2014. | |
Abd El AttiRM and Shash LS: Potential diagnostic utility of CD56 and claudin-1 in papillary thyroid carcinoma and solitary follicular thyroid nodules. J Egypt Natl Canc Inst. 24:175–184. 2012. View Article : Google Scholar | |
Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A and Tsukita S: Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J Cell Biol. 156:1099–1111. 2002. View Article : Google Scholar : PubMed/NCBI | |
Reyes JL, Lamas M, Martin D, del Carmen Namorado M, Islas S, Luna J, Tauc M and González-Mariscal L: The renal segmental distribution of claudins changes with development. Kidney Int. 62:476–487. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Ding L, Lu Q and Chen YH: Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers. 1:e249782013. View Article : Google Scholar | |
Garcia-Hernandez V, Quiros M and Nusrat A: Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 1397:66–79. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tőkés AM, Szász AM, Juhász E, Schaff Z, Harsányi L, Molnár IA, Baranyai Z, Besznyák I Jr, Zaránd A, Salamon F, et al: Expression of tight junction molecules in breast carcinomas analysed by array PCR and immunohistochemistry. Pathol Oncol Res. 18:593–606. 2012. View Article : Google Scholar | |
Németh Z, Szász AM, Tátrai P, Németh J, Gyorffy H, Somorácz A, Szíjártó A, Kupcsulik P, Kiss A and Schaff Z: Claudin-1, -2, -3, -4, -7, -8, and -10 protein expression in biliary tract cancers. J Histochem Cytochem. 57:113–121. 2009. View Article : Google Scholar : | |
Zhang Z, Wang A, Sun B, Zhan Z, Chen K and Wang C: Expression of CLDN1 and CLDN10 in lung adenocarcinoma in situ and invasive lepidic predominant adenocarcinoma. J Cardiothorac Surg. 8:952013. View Article : Google Scholar : PubMed/NCBI | |
Cheung ST, Leung KL, Ip YC, Chen X, Fong DY, Ng IO, Fan ST and So S: Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res. 11:551–556. 2005.PubMed/NCBI | |
Sanada Y, Yoshida K and Itoh H: Comparison of CT enhancement patterns and histologic features in hepatocellular carcinoma up to 2 cm: Assessment of malignant potential with claudin-10 immunohistochemistry. Oncol Rep. 17:1177–1182. 2007.PubMed/NCBI | |
Aldred MA, Huang Y, Liyanarachchi S, Pellegata NS, Gimm O, Jhiang S, Davuluri RV, de la Chapelle A and Eng C: Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J Clin Oncol. 22:3531–3539. 2004. View Article : Google Scholar : PubMed/NCBI | |
Barros-Filho MC, Marchi FA, Pinto CA, Rogatto SR and Kowalski LP: High Diagnostic Accuracy Based on CLDN10, HMGA2, and LAMB3 Transcripts in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 100:E890–E899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Blaskewicz CD, Pudney J and Anderson DJ: Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 85:97–104. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cereijido M, Robbins ES, Dolan WJ, Rotunno CA and Sabatini DD: Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 77:853–880. 1978. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Palomo A, Meza I, Beaty G and Cereijido M: Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol. 87:736–745. 1980. View Article : Google Scholar : PubMed/NCBI | |
Meza I, Ibarra G, Sabanero M, Martínez-Palomo A and Cereijido M: Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol. 87:746–754. 1980. View Article : Google Scholar : PubMed/NCBI | |
Meza I, Sabanero M, Stefani E and Cereijido M: Occluding junctions in MDCK cells: Modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem. 18:407–421. 1982. View Article : Google Scholar : PubMed/NCBI | |
Cereijido M, Stefani E and Palomo AM: Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity. J Membr Biol. 53:19–32. 1980. View Article : Google Scholar : PubMed/NCBI | |
Balda MS, Whitney JA, Flores C, González S, Cereijido M and Matter K: Functional dissociation of paracellular perme-ability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 134:1031–1049. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fanning AS, Little BP, Rahner C, Utepbergenov D, Walther Z and Anderson JM: The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell. 18:721–731. 2007. View Article : Google Scholar : | |
Van Itallie CM, Gambling TM, Carson JL and Anderson JM: Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci. 118:1427–1436. 2005. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Van Itallie C, Rahner C and Anderson JM: Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 284:C1346–C1354. 2003. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Van Itallie CM, McCrea HJ, Rahner C and Anderson JM: Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 283:C142–C147. 2002. View Article : Google Scholar : PubMed/NCBI | |
González-Mariscal L, Chávez de Ramírez B and Cereijido M: Effect of temperature on the occluding junctions of mono-layers of epithelioid cells (MDCK). J Membr Biol. 79:175–184. 1984. View Article : Google Scholar | |
Gonzalez-Mariscal L, Contreras RG, Bolívar JJ, Ponce A, Chávez De Ramirez B and Cereijido M: Role of calcium in tight junction formation between epithelial cells. Am J Physiol. 259:C978–C986. 1990. View Article : Google Scholar : PubMed/NCBI | |
Contreras RG, Miller JH, Zamora M, González-Mariscal L and Cereijido M: Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation. Am J Physiol. 263:C313–C318. 1992. View Article : Google Scholar : PubMed/NCBI | |
Amaya E, Alarcón L, Martín-Tapia D, Cuellar-Pérez F, Cano-Cortina M, Ortega-Olvera JM, Cisneros B, Rodriguez AJ, Gamba G and González-Mariscal L: Activation of the Ca2+ sensing receptor and the PKC/WNK4 downstream signaling cascade induces incorporation of ZO-2 to tight junctions and its separation from 14-3-3. Mol Biol Cell. 30:2377–2398. 2019. View Article : Google Scholar : PubMed/NCBI | |
Balda MS, Gonzalez-Mariscal L, Matter K, Cereijido M and Anderson JM: Assembly of the tight junction: The role of diacylglycerol. J Cell Biol. 123:293–302. 1993. View Article : Google Scholar : PubMed/NCBI | |
Balda MS, González-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, García-Sáinz JA and Cereijido M: Assembly and sealing of tight junctions: Possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 122:193–202. 1991. View Article : Google Scholar : PubMed/NCBI | |
Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y and Tsukita S: Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 147:195–204. 1999. View Article : Google Scholar : PubMed/NCBI | |
Feldman G, Kiely B, Martin N, Ryan G, McMorrow T and Ryan MP: Role for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol. 18:1662–1671. 2007. View Article : Google Scholar : PubMed/NCBI | |
García-Hernández V, Flores-Maldonado C, Rincon-Heredia R, Verdejo-Torres O, Bonilla-Delgado J, Meneses-Morales I, Gariglio P and Contreras RG: EGF regulates claudin-2 and -4 expression through Src and STAT3 in MDCK cells. J Cell Physiol. 230:105–115. 2015. View Article : Google Scholar | |
Inai T, Kobayashi J and Shibata Y: Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol. 78:849–855. 1999. View Article : Google Scholar | |
McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Skare IB, Lynch RD and Schneeberger EE: Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J Cell Sci. 113:3387–3398. 2000.PubMed/NCBI | |
Van Itallie CM, Mitic LL and Anderson JM: Claudin-2 forms homodimers and is a component of a high molecular weight protein complex. J Biol Chem. 286:3442–3450. 2011. View Article : Google Scholar : | |
Milatz S, Piontek J, Hempel C, Meoli L, Grohe C, Fromm A, Lee IM, El-Athman R and Günzel D: Tight junction strand formation by claudin-10 isoforms and claudin-10a/-10b chimeras. Ann N Y Acad Sci. 1405:102–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa S and Huibregtse JM: Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol. 20:8244–8253. 2000. View Article : Google Scholar : PubMed/NCBI | |
Golebiewski L, Liu H, Javier RT and Rice AP: The avian influenza virus NS1 ESEV PDZ binding motif associates with Dlg1 and Scribble to disrupt cellular tight junctions. J Virol. 85:10639–10648. 2011. View Article : Google Scholar : PubMed/NCBI | |
Johnson C, Sanders K and Fan H: Jaagsiekte sheep retrovirus transformation in Madin-Darby canine kidney epithelial cell three-dimensional culture. J Virol. 84:5379–5390. 2010. View Article : Google Scholar : PubMed/NCBI | |
Töyli M, Rosberg-Kulha L, Capra J, Vuoristo J and Eskelinen S: Different responses in transformation of MDCK cells in 2D and 3D culture by v-Src as revealed by microarray techniques, RT-PCR and functional assays. Lab Invest. 90:915–928. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mettlen M, Platek A, Van Der Smissen P, Carpentier S, Amyere M, Lanzetti L, de Diesbach P, Tyteca D and Courtoy PJ: Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic. 7:589–603. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rahikkala M, Sormunen R and Eskelinen S: Effects of src kinase and TGFbeta1 on the differentiation and morphogenesis of MDCK cells grown in three-dimensional collagen and Matrigel environments. J Pathol. 195:391–400. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto T and Nigam SK: Cell-cell dissociation upon epithelial cell scattering requires a step mediated by the proteasome. J Biol Chem. 274:24579–24584. 1999. View Article : Google Scholar : PubMed/NCBI | |
Takeda H and Tsukita S: Effects of tyrosine phosphorylation on tight junctions in temperature-sensitive v-src-transfected MDCK cells. Cell Struct Funct. 20:387–393. 1995. View Article : Google Scholar : PubMed/NCBI | |
Connolly-Andersen AM, Magnusson KE and Mirazimi A: Basolateral entry and release of Crimean-Congo hemorrhagic fever virus in polarized MDCK-1 cells. J Virol. 81:2158–2164. 2007. View Article : Google Scholar : | |
Nunbhakdi-Craig V, Craig L, Machleidt T and Sontag E: Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J Virol. 77:2807–2818. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tafazoli F, Zeng CQ, Estes MK, Magnusson KE and Svensson L: NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol. 75:1540–1546. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mo C, Schneeberger EE and Arvin AM: Glycoprotein E of varicella-zoster virus enhances cell-cell contact in polarized epithelial cells. J Virol. 74:11377–11387. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rajasekaran AK, Hojo M, Huima T and Rodriguez-Boulan E: Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol. 132:451–463. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gottlieb TA, Ivanov IE, Adesnik M and Sabatini DD: Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol. 120:695–710. 1993. View Article : Google Scholar : PubMed/NCBI | |
Stephens EB, Compans RW, Earl P and Moss B: Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J. 5:237–245. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schoenenberger CA, Zuk A, Kendall D and Matlin KS: Multilayering and loss of apical polarity in MDCK cells trans-formed with viral K-ras. J Cell Biol. 112:873–889. 1991. View Article : Google Scholar : PubMed/NCBI | |
Gravotta D, Adesnik M and Sabatini DD: Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral plasma membranes: Energy dependence and involvement of GTP-binding proteins. J Cell Biol. 111:2893–2908. 1990. View Article : Google Scholar : PubMed/NCBI | |
van Meer G and Simons K: The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5:1455–1464. 1986. View Article : Google Scholar : PubMed/NCBI | |
Rindler MJ, Ivanov IE, Plesken H, Rodriguez-Boulan E and Sabatini DD: Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol. 98:1304–1319. 1984. View Article : Google Scholar : PubMed/NCBI | |
Roth MG and Compans RW: Delayed appearance of pseudotypes between vesicular stomatitis virus influenza virus during mixed infection of MDCK cells. J Virol. 40:848–860. 1981. View Article : Google Scholar : PubMed/NCBI | |
Noyce RS, Delpeut S and Richardson CD: Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology. 436:210–220. 2013. View Article : Google Scholar | |
Hernandez S, Chavez Munguia B and Gonzalez-Mariscal L: ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture. Exp Cell Res. 313:1533–1547. 2007. View Article : Google Scholar : PubMed/NCBI | |
Raya-Sandino A, Castillo-Kauil A, Domínguez-Calderón A, Alarcón L, Flores-Benitez D, Cuellar-Perez F, López-Bayghen B, Chávez-Munguía B, Vázquez-Prado J and González-Mariscal L: Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function. Biochim Biophys Acta Mol Cell Res. 1864:1714–1733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Günzel D and Yu AS: Claudins and the modulation of tight junction permeability. Physiol Rev. 93:525–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
Enck AH, Berger UV and Yu AS: Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Renal Physiol. 281:F966–F974. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rahner C, Mitic LL and Anderson JM: Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. 120:411–422. 2001. View Article : Google Scholar : PubMed/NCBI | |
Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J and Anderson JM: Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol. 291:F1288–F1299. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ikari A, Sato T, Takiguchi A, Atomi K, Yamazaki Y and Sugatani J: Claudin-2 knockdown decreases matrix metallopro-teinase-9 activity and cell migration via suppression of nuclear Sp1 in A549 cells. Life Sci. 88:628–633. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hicks DA, Galimanis CE, Webb PG, Spillman MA, Behbakht K, Neville MC and Baumgartner HK: Claudin-4 activity in ovarian tumor cell apoptosis resistance and migration. BMC Cancer. 16:7882016. View Article : Google Scholar : PubMed/NCBI | |
Dahiya N, Becker KG, Wood WH III, Zhang Y and Morin PJ: Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion. PLoS One. 6:e221192011. View Article : Google Scholar : PubMed/NCBI | |
Ashikari D, Takayama KI, Obinata D, Takahashi S and Inoue S: CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci. 108:1386–1393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ip YC, Cheung ST, Lee YT, Ho JC and Fan ST: Inhibition of hepatocellular carcinoma invasion by suppression of claudin-10 in HLE cells. Mol Cancer Ther. 6:2858–2867. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Feng L and Cui J: Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol. 13:722018. View Article : Google Scholar : PubMed/NCBI | |
Shang X, Lin X, Alvarez E, Manorek G and Howell SB: Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases. Neoplasia. 14:974–985. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Wu Q, Liu Y, Xu X and Quan C: Gene silencing of claudin-6 enhances cell proliferation and migration accompanied with increased MMP-2 activity via p38 MAPK signaling pathway in human breast epithelium cell line HBL-100. Mol Med Rep. 8:1505–1510. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Gong Y, Ning X, Peng D, Liu L, He S, Gong K, Zhang C, Li X and Zhou L: Downregulation of CLDN7 due to promoter hypermethylation is associated with human clear cell renal cell carcinoma progression and poor prognosis. J Exp Clin Cancer Res. 37:2762018. View Article : Google Scholar : PubMed/NCBI | |
Li HP, Peng CC, Wu CC, Chen CH, Shih MJ, Huang MY, Lai YR, Chen YL, Chen TW, Tang P, et al: Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 37:1022018. View Article : Google Scholar : PubMed/NCBI | |
Webb PG, Spillman MA and Baumgartner HK: Claudins play a role in normal and tumor cell motility. BMC Cell Biol. 14:192013. View Article : Google Scholar : PubMed/NCBI | |
Ikari A, Takiguchi A, Atomi K, Sato T and Sugatani J: Decrease in claudin-2 expression enhances cell migration in renal epithelial Madin-Darby canine kidney cells. J Cell Physiol. 226:1471–1478. 2011. View Article : Google Scholar | |
Handorf AM, Zhou Y, Halanski MA and Li WJ: Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 11:1–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Indra I and Beningo KA: An in vitro correlation of metastatic capacity, substrate rigidity, and ECM composition. J Cell Biochem. 112:3151–3158. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cartagena-Rivera AX, Van Itallie CM, Anderson JM and Chadwick RS: Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat Commun. 8:10302017. View Article : Google Scholar : PubMed/NCBI |