Polycomb repressor complex 2 function in breast cancer (Review)
- Authors:
- Courtney J. Martin
- Roger A. Moorehead
-
Affiliations: Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada - Published online on: September 17, 2020 https://doi.org/10.3892/ijo.2020.5122
- Pages: 1085-1094
-
Copyright: © Martin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kim JM, Kim K, Punj V, Liang G, Ulmer TS, Lu W and An W: Linker histone H1. 2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Sci Rep. 5:167142015. View Article : Google Scholar | |
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI | |
Czermin B, Melfi R, McCabe D, Seitz V, Imhof A and Pirrotta V: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 111:185–196. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stützer A, Fischle W, Bonaldi T and Pasini D: Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell. 53:49–62. 2014. View Article : Google Scholar | |
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P and Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16:2893–2905. 2002. View Article : Google Scholar : PubMed/NCBI | |
Laugesen A, Højfeldt JW and Helin K: Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 74:8–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P and Kingston RE: The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol. 22:6070–6078. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lewis EB: A gene complex controlling segmentation in Drosophila. Genes, development and cancer. Springer; pp. 205–217. 1978, View Article : Google Scholar | |
Margueron R and Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature. 469:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rajasekhar VK and Begemann M: Concise review: Roles of polycomb group proteins in development and disease: A stem cell perspective. Stem Cells. 25:2498–2510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R and Nogales E: Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science. 359:940–944. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M and Beisel C: A high-density map for navigating the human polycomb complexome. Cell Rep. 17:583–595. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Kang K and Kim J: AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37:2940–2950. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li G, Margueron R, Ku M, Chambon P, Bernstein BE and Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24:368–380. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A and Wysocka J: Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell. 139:1290–1302. 2009. View Article : Google Scholar | |
Cao R and Zhang YI: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 15:57–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Denisenko O, Shnyreva M, Suzuki H and Bomsztyk K: Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol Cell Biol. 18:5634–5642. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pasini D, Bracken AP, Jensen MR, Denchi EL and Helin K: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23:4061–4071. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moritz LE and Trievel RC: Structure, mechanism, and regulation of polycomb-repressive complex 2. J Biol Chem. 293:13805–13814. 2018. View Article : Google Scholar : | |
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, et al: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 419:624–629. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiao L and Liu X: Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 350:aac43832015. View Article : Google Scholar : PubMed/NCBI | |
Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, et al: Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 461:762–767. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nekrasov M, Wild B and Müller J: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6:348–353. 2005. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Xing X, Hu M, Zhang Y, Liu P and Chai J: Structural basis of EZH2 recognition by EED. Structure. 15:1306–1315. 2007. View Article : Google Scholar : PubMed/NCBI | |
Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP and Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 15:942–947. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pasini D, Bracken AP, Hansen JB, Capillo M and Helin K: The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 27:3769–3779. 2007. View Article : Google Scholar : PubMed/NCBI | |
Højfeldt JW, Laugesen A, Willumsen BM, Damhofer H, Hedehus L, Tvardovskiy A, Mohammad F, Jensen ON and Helin K: Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol biol. 25:225–232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transfor-mation of breast epithelial cells. Proc Natl Acad Sci USA. 100:11606–11611. 2003. View Article : Google Scholar | |
Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD and Reinberg D: Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 32:503–518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Holder M, Grau D, Saldaña-Meyer R, Yu JR, Ganai RA, Zhang J, Wang M, LeRoy G, Dobenecker MW, et al: Distinct stimulatory mechanisms regulate the catalytic activity of polycomb repressive complex 2. Mol Cell. 70:435–448.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Jiao L, Shubbar M, Yang X and Liu X: Unique structural platforms of Suz12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell. 69:840–852.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, et al: Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 42:330–341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pasini D, Cloos PAC, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J and Helin K: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 464:306–310. 2010. View Article : Google Scholar : PubMed/NCBI | |
Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF and Laue ED: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 16:1077–1085. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Tyl M, Ward R, Sobott F, Maman J, Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, et al: Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol. 20:29–35. 2013. View Article : Google Scholar : | |
Kouznetsova VL, Tchekanov A, Li X, Yan X and Tsigelny IF: Polycomb repressive 2 complex-molecular mechanisms of function. Protein Sci. 28:1387–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jørgensen HF, Pereira CF, Leleu M, Piccolo FM, Spivakov M, et al: Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol. 12:618–624. 2010. View Article : Google Scholar : PubMed/NCBI | |
Son J, Shen SS, Margueron R and Reinberg D: Nucleosome- binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev. 27:2663–2677. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, et al: Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 7:136612016. View Article : Google Scholar : PubMed/NCBI | |
Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA, et al: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8:e10027742012. View Article : Google Scholar : PubMed/NCBI | |
Kalb R, Latwiel S, Baymaz HI, Jansen PW, Müller CW, Vermeulen M and Müller J: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol. 21:569–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y and Orkin SH: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell. 139:1303–1314. 2009. View Article : Google Scholar | |
Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, et al: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol. 19:1257–1265. 2012. View Article : Google Scholar : PubMed/NCBI | |
Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nuñez JK, Nickoloff J, et al: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol. 19:1266–1272. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boulay G, Rosnoblet C, Guérardel C, Angrand PO and Leprince D: Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J. 434:333–342. 2011. View Article : Google Scholar | |
Li H, Liefke R, Jiang J, Kurland JV, Tian W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, et al: Polycomb-like proteins link the PRC2 complex to CpG islands. Nature. 549:287–291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W, Yu H, Teng X, Yang Y, Feng W, et al: PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. Sci Adv. 6:eaaz03562020. View Article : Google Scholar : PubMed/NCBI | |
Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M, Marks H, van Heeringen SJ and Veenstra GJC: MTF2 recruits polycomb repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet. 50:1002–1010. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M and Helin K: A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol. 10:1291–1300. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, et al: Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell. 70:1149–1162.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 441:349–353. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bracken AP, Dietrich N, Pasini D, Hansen KH and Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20:1123–1136. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, et al: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 125:301–313. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M and Pirrotta V: Genome-wide analysis of polycomb targets in drosophila melanogaster. Nat Genet. 38:700–705. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M and Zhou MM: Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol. 22:161–168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, et al: Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Elife. 5:e176672016. View Article : Google Scholar : PubMed/NCBI | |
Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, et al: Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 157:1445–1459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, et al: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7:1456–1470. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS, Virbasius CM, Lin L, Zhu LJ, Wajapeyee N and Green MR: TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature. 516:116–120. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sanulli S, Justin N, Teissandier A, Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST, Offer J, et al: Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell. 57:769–783. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riising EM, Comet I, Leblanc B, Wu X, Johansen JV and Helin K: Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell. 55:347–360. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V and Schwartz YB: Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res. 44:10132–10149. 2016.PubMed/NCBI | |
Bauer M, Trupke J and Ringrose L: The quest for mammalian Polycomb response elements: Are we there yet? Chromosoma. 125:471–496. 2016. View Article : Google Scholar : | |
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, et al: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 448:553–560. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brien GL, Gambero G, O'connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, et al: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol. 19:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD, et al: An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell. 49:571–582. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J, et al: HOTAIR is a therapeutic target in glioblastoma. Oncotarget. 6:8353–8365. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bracken AP, Pasini D, Capra M, Prosperini E, Colli E and Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22:5323–5335. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP and Akslen LA: EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 24:268–273. 2006. View Article : Google Scholar | |
Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T and Sartorelli V: Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 32:1607–1614. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, et al: Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of poly-comb repressive complex 2. J Med Chem. 57:9512–9521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Simons DL, Segall I, Carcamo-Cavazos V, Schwartz EJ, Yan N, Zuckerman NS, Dirbas FM, Johnson DL, Holmes SP and Lee PP: PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS One. 7:e512392012. View Article : Google Scholar : PubMed/NCBI | |
Curran S and Murray GI: Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 189:300–308. 1999. View Article : Google Scholar : PubMed/NCBI | |
Merdad A, Karim S, Schulten HJ, Dallol A, Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM and Al-Qahtani MH: Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res. 34:1355–1366. 2014.PubMed/NCBI | |
Chien YC, Liu LC, Ye HY, Wu JY and Yu YL: EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer Res. 8:422–434. 2018.PubMed/NCBI | |
Shin YJ and Kim JH: The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One. 7:e303932012. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J and Wang Z: EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep. 7:35682017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Mao B, Cheng C, Zou Z, Gao J, Yang Y, Lei T, Qi X, Yuan Z, Xu W and Lu Z: YAP promotes breast cancer metastasis by repressing growth differentiation factor-15. Biochim Biophys Acta Mol Basis Dis. 1864:1744–1753. 2018. View Article : Google Scholar : PubMed/NCBI | |
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Mao B, Cheng J, Gao Y, Jiang K, Chen J, Yuan Z and Meng S: YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLoS One. 10:e01207902015. View Article : Google Scholar : PubMed/NCBI | |
Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, et al: Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 15:1752–1759. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET and Yu Q: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Lee S, Qiao Y, Li Z, Lee PL, Lee YJ, Jiang X, Tan J, Aau M, Lim CZ and Yu Q: Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death Differ. 18:1771–1779. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY and Yu Q: Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression. Cell Death Differ. 17:801–810. 2010. View Article : Google Scholar | |
Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ and Zhao Q: Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 32:2–9. 2011. View Article : Google Scholar | |
Zhang Q, Padi SKR, Tindall DJ and Guo B: Polycomb protein EZH2 suppresses apoptosis by silencing the proapoptotic miR-31. Cell Death Dis. 5:e14862014. View Article : Google Scholar : PubMed/NCBI | |
Pietersen AM, Horlings HM, Hauptmann M, Langerød A, Ajouaou A, Cornelissen-Steijger P, Wessels LF, Jonkers J, van de Vijver MJ and van Lohuizen M: EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 10:R1092008. View Article : Google Scholar : PubMed/NCBI | |
Onder TT, Gupta PB, Mani SA, Yang J, Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lester RD, Jo M, Montel V, Takimoto S and Gonias SL: uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schmalhofer O, Brabletz S and Brabletz T: E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer and Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar | |
Herranz N, Pasini D, Díaz VM, Francí C, Gutierrez A, Dave N, Escrivà M, Hernandez-Muñoz I, Di Croce L, Helin K, et al: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 28:4772–4781. 2008. View Article : Google Scholar : PubMed/NCBI | |
Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, Grigsby S, Basrur V, Nesvizhskii AI, Muntean A, et al: p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun. 9:28012018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xi Y, Li W, McCarthy RL, Stratton SA, Zou W, Li W, Dent SY, Jain AK and Barton MC: TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene. 36:2991–3001. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mahara S, Lee PL, Feng M, Tergaonkar V, Chng WJ and Yu Q: HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl Acad Sci USA. 113:E3735–E3744. 2016. View Article : Google Scholar | |
Chisholm KM, Wan Y, Li R, Montgomery KD, Chang HY and West RB: Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One. 7:e479982012. View Article : Google Scholar : PubMed/NCBI | |
Sørensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M, Larsen MJ and Kruse TA: Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Br Cancer Res Treat. 142:529–536. 2013. View Article : Google Scholar | |
Kim CY, Oh JH, Lee JY and Kim MH: The LncRNA HOTAIRM1 promotes tamoxifen resistance by mediating HOXA1 expression in ER+ Breast Cancer Cells. J Cancer. 11:3416–3423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, Li J, Guo Q, Gong C, Liu B and Su S: NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 6:32410–32425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Sui S, Wu H, Zhang J, Zhang X, Xu S and Pang D: The transcriptional landscape of lncRNAs reveals the oncogenic function of LINC00511 in ER-negative breast cancer. Cell Death Dis. 10:5992019. View Article : Google Scholar : PubMed/NCBI | |
Sha S, Yuan D, Liu Y, Han B and Zhong N: Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open. 6:1310–1316. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, Guo W, Wang X, He D and Guo P: Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget. 7:37868–37881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saini HK, Enright AJ and Griffiths-Jones S: Annotation of mammalian primary microRNAs. BMC Genomics. 9:5642008. View Article : Google Scholar : PubMed/NCBI | |
Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hill L, Browne G and Tulchinsky E: ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer. 132:745–754. 2013. View Article : Google Scholar | |
Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y and Liu C: Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. 53:e128012020. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jones R, Watson K, Bruce A, Nersesian S, Kitz J and Moorehead R: Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine Claudin-low mammary tumor cells. Oncotarget. 8:23727–23749. 2017. View Article : Google Scholar : PubMed/NCBI | |
Watson KL, Jones RA, Bruce A and Moorehead RA: The miR-200b/200a/429 cluster prevents metastasis and induces dormancy in a murine claudin-low mammary tumor cell line. Exp Cell Res. 369:17–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bockmeyer CL, Christgen M, Müller M, Fischer S, Ahrens P, Länger F, Kreipe H and Lehmann U: MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer ResTreat. 130:735–745. 2011. View Article : Google Scholar | |
Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D and Richer JK: MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer. 1:306–319. 2010. View Article : Google Scholar | |
Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V and Pal-Bhadra M: Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene. 641:248–258. 2018. View Article : Google Scholar | |
Humphries B, Wang Z, Oom AL, Fisher T, Tan D, Cui Y, Jiang Y and Yang C: MicroRNA-200b targets protein kinase Calpha and suppresses triple-negative breast cancer metastasis. Carcinogenesis. 35:2254–2263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI | |
Howe EN, Cochrane DR and Richer JK: The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 17:65–77. 2012. View Article : Google Scholar : PubMed/NCBI | |
Radisky DC: miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res. 13:1102011. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN and Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 39:761–772. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Jiang J, Yu Y, Tian R, Guo X, Li X, Shen M, Xu M, Zhu F, Shi C, et al: Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer. 109:3092–3104. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA and Isola JJ: Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Pathol. 105:394–402. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y and Goodall GJ: Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci. 126:2256–2266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C and Zhang Q: DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 359:198–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, et al: Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood. 114:2733–2743. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE and Jones PA: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 8:1579–1588. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, Schwarz M, Leshchenko V, Rialdi A, Dale B, et al: Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 16:214–222. 2020. View Article : Google Scholar : | |
Gulati N, Béguelin W and Giulino-Roth L: Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma. 59:1574–1585. 2018. View Article : Google Scholar : PubMed/NCBI | |
Richart L and Margueron R: Drugging histone methyltransferases in cancer. Curr Opin Chem Biol. 56:51–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hoy SM: Tazemetostat: First approval. Drugs. 80:513–521. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD and Orkin SH: Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol. 9:643–650. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J, Zhou J, Yang C, Zhao K, Yi K, et al: A compound AC1Q3QWB selectively disrupts HOTAIR-mediated recruitment of PRC2 and enhances cancer therapy of DZNep. Theranostics. 9:4608–4623. 2019. View Article : Google Scholar : PubMed/NCBI | |
Özeş AR, Wang Y, Zong X, Fang F, Pilrose J and Nephew KP: Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep. 7:8942017. View Article : Google Scholar | |
Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S, et al: Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 30:907–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Seoane JA, Kirkland JG, Caswell-Jin JL, Crabtree GR and Curtis C: Chromatin regulators mediate anthracycline sensitivity in breast cancer. Nat Med. 25:1721–1727. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hirukawa A, Singh S, Wang J, Rennhack JP, Swiatnicki M, Sanguin-Gendreau V, Zuo D, Daldoul K, Lavoie C, Park M, et al: Reduction of Global H3K27me3 Enhances HER2/ErbB2 targeted therapy. Cell Rep. 29:249–257. 2019. View Article : Google Scholar |