Serine, glycine and one‑carbon metabolism in cancer (Review)
- Authors:
- Sijing Pan
- Ming Fan
- Zhangnan Liu
- Xia Li
- Huijuan Wang
-
Affiliations: Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China - Published online on: December 11, 2020 https://doi.org/10.3892/ijo.2020.5158
- Pages: 158-170
-
Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Reznik E, Luna A, Aksoy BA, Liu EM, La K, Ostrovnaya I, Creighton CJ, Hakimi AA and Sander C: A Landscape of meta-bolic variation across tumor types. Cell Syst. 6:301–313.e3. 2018. View Article : Google Scholar | |
Sun L, Suo C, Li ST, Zhang H and Gao P: Metabolic reprogram-ming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer. 1870:51–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG and DeBerardinis RJ: Understanding the intersections between metabolism and cancer biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vazquez A, Kamphorst JJ, Markert EK, Schug ZT, Tardito S and Gottlieb E: Cancer metabolism at a glance. J Cell Sci. 129:3367–3373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Bose S and Le A: Glucose metabolism in cancer. Adv Exp Med Biol. 1063:3–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR and Vander Heiden MG: Amino Acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell. 36:540–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Song L, Wan Q, Wu G, Li X, Wang Y, Wang J, Liu Z, Zhong X, He X, et al: cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25:429–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Newman AC and Maddocks ODK: Serine and functional metabolites in cancer. Trends Cell Biol. 27:645–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Xia Y, He F, Fu J, Xin Z, Deng B, He L, Zhou X and Ren W: Serine Supports IL-1β production in macrophages through mTOR signaling. Front Immunol. 11:18662020. View Article : Google Scholar | |
Sowers ML, Herring J, Zhang W, Tang H, Ou Y, Gu W and Zhang K: Analysis of glucose-derived amino acids involved in one-carbon and cancer metabolism by stable-isotope tracing gas chromatography mass spectrometry. Anal Biochem. 566:1–9. 2019. View Article : Google Scholar | |
Newman AC and Maddocks ODK: One-carbon metabolism in cancer. Br J Cancer. 116:1499–1504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lan X, Field MS and Stover PJ: Cell cycle regulation of folate-mediated one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med. 10:e14262018. View Article : Google Scholar : PubMed/NCBI | |
Ducker GS and Rabinowitz JD: One-carbon metabolism in health and disease. Cell Metab. 25:27–42. 2017. View Article : Google Scholar : | |
Yang M and Vousden KH: Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 16:650–662. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng JD, Wu WKK, Wang HY and Li XX: Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res. 149:1043522019. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Ye B, Ding J, Yu Y, Alptekin A, Thangaraju M, Prasad PD, Ding ZC, Park EJ, Choi JH, et al: Metabolic reprogramming by MYCN confers dependence on the serine-glycine-one-carbon biosynthetic pathway. Cancer Res. 79:3837–3850. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mattaini KR, Sullivan MR, Lau AN, Fiske BP, Bronson RT and Vander Heiden MG: Increased PHGDH expression promotes aberrant melanin accumulation. BMC Cancer. 19:7232019. View Article : Google Scholar : PubMed/NCBI | |
Samanta D, Park Y, Andrabi SA, Shelton LM, Gilkes DM and Semenza GL: PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76:4430–4442. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW, et al: Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29:1410–1421.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M, Vakifahmetoglu-Norberg H and Norberg E: PHGDH Defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19:2289–2303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A, Badur MG, Bhangoo MS, Thorson PK, Richards A, Rooslid T, et al: Increased serine and one-carbon pathway metabolism by PKClambda/iota deficiency promotes neuroendocrine prostate cancer. Cancer Cell. 35:385–400.e9. 2019. View Article : Google Scholar | |
Liu B, Jia Y, Cao Y, Wu S, Jiang H, Sun X, Ma J, Yin X, Mao A and Shang M: Overexpression of phosphoserine aminotransferase 1 (PSAT1) predicts poor prognosis and associates with tumor progression in human esophageal squamous cell carcinoma. Cell Physiol Biochem. 39:395–406. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin HO, Hong SE, Kim JY, Jang SK, Kim YS, Sim JH, Oh AC, Kim H, Hong YJ, Lee JK and Park IC: Knock-down of PSAT1 enhances sensitivity of NSCLC cells to glutamine-limiting conditions. Anticancer Res. 39:6723–6730. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Liang X, Xu J and Cai X: miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag Res. 10:6537–6547. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, et al: Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 544:372–376. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mattaini KR, Sullivan MR and Vander Heiden MG: The importance of serine metabolism in cancer. J Cell Biol. 214:249–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, et al: NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 47:1475–1481. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E and Vousden KH: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. 2013. View Article : Google Scholar | |
Wortel IMN, van der Meer LT, Kilberg MS and van Leeuwen FN: Surviving Stress: Modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 28:794–806. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T and Itoh K: Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr. 64:1–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dey S, Sayers CM, Verginadis II, Lehman SL, Cheng Y, Cerniglia GJ, Tuttle SW, Feldman MD, Zhang PJ, Fuchs SY, et al: ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasisATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest. 125:2592–2608. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tameire F, Verginadis II, Leli NM, Polte C, Conn CS, Ojha R, Salas Salinas C, Chinga F, Monroy AM, Fu W, et al: ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol. 21:889–899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mesclon F, Lambert-Langlais S, Carraro V, Parry L, Hainault I, Jousse C, Maurin AC, Bruhat A, Fafournoux P and Averous J: Decreased ATF4 expression as a mechanism of acquired resistance to long-term amino acid limitation in cancer cells. Oncotarget. 8:27440–27453. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mazor KM and Stipanuk MH: GCN2- and eIF2α-phosph orylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells. Amino Acids. 48:2831–2842. 2016. View Article : Google Scholar : PubMed/NCBI | |
Al-Baghdadi RJT, Nikonorova IA, Mirek ET, Wang Y, Park J, Belden WJ, Wek RC and Anthony TG: Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Sci Rep. 7:12722017. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Dai W, Kutzler L, Lacko HA, Jefferson LS, Dennis MD and Kimball SR: ATF4-mediated upregulation of REDD1 and Sestrin2 suppresses mTORC1 activity during prolonged leucine deprivation. J Nutr. 150:1022–1030. 2020. View Article : Google Scholar | |
Adams CM: Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J Biol Chem. 282:16744–16753. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD and Thompson CB: Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci USA. 109:6904–6909. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y and Pang D: PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J Exp Clin Cancer Res. 36:1792017. View Article : Google Scholar | |
Svoboda LK, Teh SSK, Sud S, Kerk S, Zebolsky A, Treichel S, Thomas D, Halbrook CJ, Lee HJ, Kremer D, et al: Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J Pathol. 245:324–336. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao E, Ding J, Xia Y, Liu M, Ye B, Choi JH, Yan C, Dong Z, Huang S, Zha Y, et al: KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep. 14:506–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Hong M, Heo SH, Park S, Kwon TK, Sung YH, Oh Y, Lee S, Yi GS and Kim I: Inhibition of euchromatin histone-lysine N-methyltransferase 2 sensitizes breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through reactive oxygen species-mediated activating transcription factor 4-C/EBP homologous protein-death receptor 5 pathway activation. Mol Carcinog. 57:1492–1506. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Li T, Wang X, Zhao E, Choi JH, Yang L, Zha Y, Dong Z, Huang S, Asara JM, et al: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18:896–907. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hydbring P, Castell A and Larsson LG: MYC modulation around the CDK2/p27/SKP2 axis. Genes (Basel). 8:1742017. View Article : Google Scholar | |
Fallah Y, Brundage J, Allegakoen P and Shajahan-Haq AN: MYC-driven pathways in breast cancer subtypes. Biomolecules. 7:532017. View Article : Google Scholar : | |
Lancho O and Herranz D: The MYC Enhancer-ome: Long-range transcriptional regulation of MYC in cancer. Trends Cancer. 4:810–822. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carabet LA, Rennie PS and Cherkasov A: Therapeutic inhibition of Myc in cancer. structural bases and computer-aided drug discovery approaches. Int J Mol Sci. 20:1202018. View Article : Google Scholar | |
Chen Y, Sun XX, Sears RC and Dai MS: Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis. 6:359–371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, et al: Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 511:483–487. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tesi A, de Pretis S, Furlan M, Filipuzzi M, Morelli MJ, Andronache A, Doni M, Verrecchia A, Pelizzola M, Amati B and Sabò A: An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep. 20:e479872019. View Article : Google Scholar : PubMed/NCBI | |
Robaina MC, Mazzoccoli L and Klumb CE: Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells. 8:13652019. View Article : Google Scholar | |
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, et al: Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15:110–121. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, Wang Z, Smith NA, Ma Y, Reinstadler B, et al: Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30:539–555.e11. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kauko O, O'Connor CM, Kulesskiy E, Sangodkar J, Aakula A, Izadmehr S, Yetukuri L, Yadav B, Padzik A, Laajala TD, et al: PP2A inhibition is a druggable MEK inhibitor resistance mecha-nism in KRAS-mutant lung cancer cells. Sci Transl Med. 10:eaaq10932018. View Article : Google Scholar | |
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A and Gorman AM: The integrated stress response. EMBO Rep. 17:1374–1395. 2016. View Article : Google Scholar : PubMed/NCBI | |
David CJ, Chen M, Assanah M, Canoll P and Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 463:364–368. 2010. View Article : Google Scholar : | |
Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, Qian J, Li R, Tao T, Wei W, et al: PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 6:13006–13018. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, et al: Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 491:458–462. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li AM and Ye J: The PHGDH enigma: Do cancer cells only need serine or also a redox modulator? Cancer Lett. 476:97–105. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F, et al: Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife. 5:e105752016. View Article : Google Scholar : PubMed/NCBI | |
Mendez-Lucas A, Li X, Hu J, Che L, Song X, Jia J, Wang J, Xie C, Driscoll PC, Tschaharganeh DF, et al: Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer Res. 77:4355–4364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, Wu H, Blanco F, Li S, Bhanot G, et al: Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Elife. 5:e107272016. View Article : Google Scholar : PubMed/NCBI | |
Kastenhuber ER and Lowe SW: Putting p53 in Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Peng Z, Wang S, Yang L, Chen Y, Kong X, Song S, Pei P, Tian C, Yan H, et al: KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res. 28:572–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang X, Li Y, Shao Y, Xiao J, Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth. Cell Death Dis. 8:e28202017. View Article : Google Scholar : PubMed/NCBI | |
Fritsche MK and Knopf A: The tumor suppressor p53 in mucosal melanoma of the head and neck. Genes (Basel). 8:3842017. View Article : Google Scholar | |
Amelio I, Cutruzzola F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Tan M and Cai Q: The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 356:156–164. 2015. View Article : Google Scholar | |
Humpton TJ, Hock AK, Maddocks ODK and Vousden KH: p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer Metab. 6:182018. View Article : Google Scholar : PubMed/NCBI | |
Riscal R, Schrepfer E, Arena G, Cissé MY, Bellvert F, Heuillet M, Rambow F, Bonneil E, Sabourdy F, Vincent C, et al: Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53. Mol Cell. 62:890–902. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ and Melino G: p73 regulates serine biosynthesis in cancer. Oncogene. 33:5039–5046. 2014. View Article : Google Scholar | |
Ou Y, Wang SJ, Jiang L, Zheng B and Gu W: p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J Biol Chem. 290:457–466. 2015. View Article : Google Scholar : | |
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, et al: Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148:259–272. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, Kang Y and Rabinowitz JD: Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23:1140–1153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH and Maddocks OD: Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7:1248–1258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maddocks OD, Labuschagne CF, Adams PD and Vousden KH: Serine metabolism supports the methionine cycle and DNA/RNA Methylation through de novo ATP synthesis in cancer cells. Mol Cell. 61:210–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Xu J, Zheng Q, He J, Zhou W, Wang K, Huang X, Fan Q, Ma J, Cheng J, et al: NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett. 466:39–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi G, Motokawa Y, Yoshida T and Hiraga K: Glycine cleavage system: Reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B Phys Biol Sci. 84:246–263. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM, et al: Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 4:e8772013. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, et al: SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 520:363–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM, et al: Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 55:253–263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ueland PM: Choline and betaine in health and disease. J Inherit Metab Dis. 34:3–15. 2011. View Article : Google Scholar | |
Friso S, Udali S, De Santis D and Choi SW: One-carbon metabolism and epigenetics. Mol Aspects Med. 54:28–36. 2017. View Article : Google Scholar | |
Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, Kunchok T, Abu-Remaileh M, Freinkman E, Schweitzer LD and Sabatini DM: Histidine catabolism is a major determinant of methotrexate sensitivity. Nature. 559:632–636. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB and Rabinowitz JD: Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 510:298–302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z and Rabinowitz JD: NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 1:404–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reid MA, Dai Z and Locasale JW: The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol. 19:1298–1306. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W and Rabinowitz JD: Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 554:128–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Lee K, Reid MA, Sanderson SM, Qiu C, Li S, Liu J and Locasale JW: Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 22:3507–3520. 2018. View Article : Google Scholar : PubMed/NCBI | |
Villa E, Ali ES, Sahu U and Ben-Sahra I: Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers (Basel). 11:6882019. View Article : Google Scholar | |
Ulanovskaya OA, Zuhl AM and Cravatt BF: NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol. 9:300–306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hughey CC, Trefts E, Bracy DP, James FD, Donahue EP and Wasserman DH: Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem. 293:11944–11954. 2018. View Article : Google Scholar : PubMed/NCBI | |
Serefidou M, Venkatasubramani AV and Imhof A: The impact of one carbon metabolism on histone methylation. Front Genet. 10:7642019. View Article : Google Scholar : PubMed/NCBI | |
Fukuoka H and Kubota T: One-carbon metabolism and lipid metabolism in DOHaD. Adv Exp Med Biol. 1012:3–9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walker AK: 1-Carbon cycle metabolites methylate their way to fatty liver. Trends Endocrinol Metab. 28:63–72. 2017. View Article : Google Scholar | |
Xiao W, Wang RS, Handy DE and Loscalzo J: NAD(H) and NADP(H) Redox couples and cellular energy metabolism. Antioxid Redox Signal. 28:251–272. 2018. View Article : Google Scholar : | |
Hanley MP and Rosenberg DW: One-carbon metabolism and colorectal cancer: Potential mechanisms of chemoprevention. Curr Pharmacol Rep. 1:197–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ser Z, Gao X, Johnson C, Mehrmohamadi M, Liu X, Li S and Locasale JW: targeting one carbon metabolism with an antimetabolite disrupts pyrimidine homeostasis and induces nucleotide overflow. Cell Rep. 15:2367–2376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pandey S, Garg P, Lee S, Choung HW, Choung YH, Choung PH and Chung JH: Nucleotide biosynthesis arrest by silencing SHMT1 function via vitamin B6-coupled vector and effects on tumor growth inhibition. Biomaterials. 35:9332–9342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tripathi SK, Gupta N, Mahato M, Gupta KC and Kumar P: Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells. Colloids Surf B Biointerfaces. 115:79–85. 2014. View Article : Google Scholar | |
Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM and Manning BD: mTORC1 induces purine synthesis through control of the mito-chondrial tetrahydrofolate cycle. Science. 351:728–733. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park Y, Reyna-Neyra A, Philippe L and Thoreen CC: mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep. 19:1083–1090. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ben-Sahra I, Howell JJ, Asara JM and Manning BD: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 339:1323–1328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, Agron S, Stettner N, Sun Q, Brandis A, Helbling D, et al: Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 527:379–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mentch SJ and Locasale JW: One-carbon metabolism and epigenetics: Understanding the specificity. Ann N Y Acad Sci. 1363:91–98. 2016. View Article : Google Scholar | |
Mahmoud AM and Ali MM: Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients. 11:6082019. View Article : Google Scholar : | |
Morgan AE, Davies TJ and Mc Auley MT: The role of DNA methylation in ageing and cancer. Proc Nutr Soc. 77:412–422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Konno M, Koseki J, Kawamoto K, Nishida N, Matsui H, Dewi DL, Ozaki M, Noguchi Y, Mimori K, Gotoh N, et al: Embryonic MicroRNA-369 controls metabolic splicing factors and urges cellular reprograming. PLoS One. 10:e01327892015. View Article : Google Scholar : PubMed/NCBI | |
Li S, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL and Suganuma T: Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol Cell. 60:408–421. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM, Boukhali M, Hayward MC, Li YY, Chen T, et al: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature. 539:390–395. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shlomi T, Fan J, Tang B, Kruger WD and Rabinowitz JD: Quantitation of cellular metabolic fluxes of methionine. Anal Chem. 86:1583–1591. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mehrmohamadi M, Liu X, Shestov AA and Locasale JW: Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 9:1507–1519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nilsson R, Nicolaidou V and Koufaris C: Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer. Gene. 716:1440322019. View Article : Google Scholar : PubMed/NCBI | |
Shin M, Momb J and Appling DR: Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydro-folate dehydrogenase/methenyltetrahydrofolate cyclohydrolase. Cancer Metab. 5:112017. View Article : Google Scholar | |
Goodman RP, Calvo SE and Mootha VK: Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism. J Biol Chem. 293:7508–7516. 2018. View Article : Google Scholar : PubMed/NCBI | |
Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, Finley LW, Lu C, Lindsten T, Cross JR, et al: Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ye C, Sutter BM, Wang Y, Kuang Z and Tu BP: A Metabolic function for phospholipid and histone methylation. Mol Cell. 66:180–193.e188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez AE, Ducker GS, Billingham LK, Martinez CA, Mainolfi N, Suri V, Friedman A, Manfredi MG, Weinberg SE, Rabinowitz JD and Chandel NS: Serine metabolism supports macrophage IL-1beta Production. Cell Metab. 29:1003–1011.e1004. 2019. View Article : Google Scholar | |
Ito Y, Makita S and Tobinai K: Development of new agents for peripheral T-cell lymphoma. Expert Opin Biol Ther. 19:197–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei N, Zhang B, Wang Y, He XH, Xu LC, Li GD, Wang YH, Wang GZ, Huang HZ and Li WT: Transarterial chemoembolization with raltitrexed-based or floxuridine-based chemotherapy for unresectable colorectal cancer liver metastasis. Clin Transl Oncol. 21:443–450. 2019. View Article : Google Scholar | |
Goirand F, Lemaitre F, Launay M, Tron C, Chatelut E, Boyer JC, Bardou M and Schmitt A: How can we best monitor 5-FU administration to maximize benefit to risk ratio? Expert Opin Drug Metab Toxicol. 14:1303–1313. 2018. View Article : Google Scholar : PubMed/NCBI | |
Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P and Falasca M: Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul. 68:77–87. 2018. View Article : Google Scholar | |
Blair HA: Daunorubicin/cytarabine liposome: A review in acute myeloid leukaemia. Drugs. 78:1903–1910. 2018. View Article : Google Scholar : PubMed/NCBI | |
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M and Gotze KS: A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 8:712016. View Article : Google Scholar : PubMed/NCBI | |
Chabner BA and Roberts TG Jr: Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer. 5:65–72. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luengo A, Gui DY and Vander Heiden MG: Targeting metabolism for cancer therapy. Cell Chem Biol. 24:1161–1180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Casero RA Jr and Marton LJ: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Paredes M and Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med. 17:330–339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Lin TY, Lee G, Paddock MN, Momb J, Cheng Z, Li Q, Fei DL, Stein BD, Ramsamooj S, et al: Mitochondrial One-carbon pathway supports cytosolic folate integrity in cancer cells. Cell. 175:1546–1560.e1517. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kucharczyk T, Krawczyk P, Powrózek T, Kowalski DM, Ramlau R, Kalinka-Warzocha E, Knetki-Wróblewska M, Winiarczyk K, Krzakowski M and Milanowski J: The Effectiveness of pemetrexed monotherapy depending on poly-morphisms in TS and MTHFR genes as well as clinical factors in advanced NSCLC patients. Pathol Oncol Res. 22:49–56. 2016. View Article : Google Scholar | |
Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, et al: Improved survival for children and young adults with t-lineage acute lymphoblastic leukemia: Results from the children's oncology group AALL0434 methotrexate randomization. J Clin Oncol. 36:2926–2934. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Chen H, Chen J, Zeng F, Zu X and Ding J: Gemcitabine/cisplatin versus methotrexate/vinblastine/doxoru-bicin/cisplatin for muscle-invasive bladder cancer: A systematic review and meta-analysis. Meta-Analysis. 14:1260–1265. 2018. | |
Calise SJ, Purich DL, Nguyen T, Saleem DA, Krueger C, Yin JD and Chan EK: 'Rod and ring' formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway. J Cell Sci. 129:3042–3052. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ross KC, Andrews AJ, Marion CD, Yen TJ and Bhattacharjee V: Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. Mol Cancer Ther. 16:1596–1609. 2017. View Article : Google Scholar : PubMed/NCBI | |
Longley DB and Harkin DP and Harkin DP: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kawahata T, Kawahara K, Shimokawa M, Sakiyama A, Shiraishi T, Minami K, Yamamoto M, Shinsato Y, Arima K, Hamada T and Furukawa T: Involvement of ribosomal protein L11 expression in sensitivity of gastric cancer against 5-FU. Oncol Lett. 19:2258–2264. 2020.PubMed/NCBI | |
Reina-Campos M, Diaz-Meco MT and Moscat J: The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol. 219:e2019070222020. View Article : Google Scholar : | |
Avgustinova A and Benitah SA: The epigenetics of tumour initiation: Cancer stem cells and their chromatin. Curr Opin Genet Dev. 36:8–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim M and Costello J: DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med. 49:e3222017. View Article : Google Scholar : PubMed/NCBI | |
Albrecht LV, Bui MH and De Robertis EM: Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation. Proc Natl Acad Sci USA. 116:2987–2995. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen WL, Sun HP, Li DD, Wang ZH, You QD and Guo XK: G9a-An appealing antineoplastic target. Curr Cancer Drug Targets. 17:555–568. 2017. View Article : Google Scholar | |
Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T and Herlyn M: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 141:583–594. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kano Y, Konno M, Ohta K, Haraguchi N, Nishikawa S, Kagawa Y, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, et al: Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth. Mol Clin Oncol. 1:753–757. 2013. View Article : Google Scholar | |
Konno M, Asai A, Kawamoto K, Nishida N, Satoh T, Doki Y, Mori M and Ishii H: The one-carbon metabolism pathway high-lights therapeutic targets for gastrointestinal cancer (Review). Int J Oncol. 50:1057–1063. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaniskan HU, Martini ML and Jin J: Inhibitors of protein methyltransferases and demethylases. Chem Rev. 118:989–1068. 2018. View Article : Google Scholar | |
Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, Castilla EA, Chen J, Yajima T, Porollo A, et al: Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell. 152:599–611. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mullarky E, Lucki NC, Beheshti Zavareh R, Anglin JL, Gomes AP, Nicolay BN, Wong JC, Christen S, Takahashi H, Singh PK, et al: Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci USA. 113:1778–1783. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJ, Possemato R, Chen WW, Sullivan LB, Fiske BP, et al: A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol. 12:452–458. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Fu J, Du J and Xu W: The Role of D-3-phosphoglycerate dehydrogenase in cancer. Int J Biol Sci. 16:1495–1506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ravez S, Spillier Q, Marteau R, Feron O and Frederick R: Challenges and opportunities in the development of serine synthetic pathway inhibitors for cancer therapy. J Med Chem. 60:1227–1237. 2017. View Article : Google Scholar | |
Gravel SP, Hulea L, Toban N, Birman E, Blouin MJ, Zakikhani M, Zhao Y, Topisirovic I, St-Pierre J and Pollak M: Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74:7521–7533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fedirko V, Lukanova A, Bamia C, Trichopolou A, Trepo E, Nöthlings U, Schlesinger S, Aleksandrova K, Boffetta P, Tjønneland A, et al: Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans. Ann Oncol. 24:543–553. 2013. View Article : Google Scholar : | |
Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A and Sparano JA: Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients. Nutriti. 28:1028–1035. 2012. | |
Mallik R and Chowdhury TA: Metformin in cancer. Diabetes Res Clin Pract. 143:409–419. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson R, Jemth AS, Gustafsson NM, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L, Llona-Minguez S, Häggblad M, et al: Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 77:937–948. 2017. View Article : Google Scholar | |
Nishimura T, Nakata A, Chen X, Nishi K, Meguro-Horike M, Sasaki S, Kita K, Horike SI, Saitoh K, Kato K, et al: Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2. Oncogene. 38:2464–2481. 2019. View Article : Google Scholar : | |
Bolusani S, Young BA, Cole NA, Tibbetts AS, Momb J, Bryant JD, Solmonson A and Appling DR: Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J Biol Chem. 286:5166–5174. 2011. View Article : Google Scholar : | |
Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A and Mootha VK: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 5:31282014. View Article : Google Scholar : PubMed/NCBI |