Immune-checkpoint inhibitors from cancer to COVID‑19: A promising avenue for the treatment of patients with COVID‑19 (Review)
- Authors:
- Silvia Vivarelli
- Luca Falzone
- Francesco Torino
- Giuseppa Scandurra
- Giulia Russo
- Roberto Bordonaro
- Francesco Pappalardo
- Demetrios A. Spandidos
- Giuseppina Raciti
- Massimo Libra
-
Affiliations: Section of General Pathology, Clinics and Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy, Epidemiology Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, I‑80131 Naples, Italy, Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, I‑00133 Rome, Italy, Medical Oncology Unit, Azienda Ospedaliera Cannizzaro, I‑95126 Catania, Italy, Department of Drug Sciences, University of Catania, I‑95123 Catania, Italy, Medical Oncology Unit, Garibaldi Hospital, I‑95122 Catania, Italy, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: December 14, 2020 https://doi.org/10.3892/ijo.2020.5159
- Pages: 145-157
This article is mentioned in:
Abstract
Chan JFW, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 395:514–523. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): Coronavirus disease (COVID-19): Situation reports. https://www.who.int/emer-gencies/diseases/novel-coronavirus-2019/situation-reports. | |
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y and Gao GF: Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24:490–502. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X and Ma X: Acute respiratory failure in COVID-19: Is it 'typical' ARDS? Crit Care. 24:1982020. View Article : Google Scholar | |
Renu K, Prasanna PL and Valsala Gopalakrishnan A: Coronaviruses pathogenesis, comorbidities and multi-organ damage - A review. Life Sci. 255:1178392020. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Li F and Shi Z-L: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019. View Article : Google Scholar | |
Jaimes JA, André NM, Chappie JS, Millet JK and Whittaker GR: Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J Mol Biol. 432:3309–3325. 2020. View Article : Google Scholar : PubMed/NCBI | |
da Costa VG, Moreli ML and Saivish MV: The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arab-Zozani M and Hassanipour S: Features and limitations of LitCovid hub for quick access to literature about COVID-19. Balkan Med J. 37:231–232. 2020.PubMed/NCBI | |
Khailany RA, Safdar M and Ozaslan M: Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19:1006822020. View Article : Google Scholar : PubMed/NCBI | |
Cohen J: New coronavirus threat galvanizes scientists. Science. 367:492–493. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A and Hasan MM: Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. Infect Genet Evol. 84:1043892020. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e00127–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, et al HCA Lung Biological Network Electronic address: lung-network@humancellatlas.org: HCA Lung Biological Network: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 181:1016–1035.e19. 2020. View Article : Google Scholar | |
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H and Pöhlmann S: A Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 78:779–784.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Devaux CA, Rolain J-M and Raoult D: ACE2 receptor poly-morphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 53:425–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou X, Chen K, Zou J, Han P, Hao J and Han Z: Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Sakagami H and Miwa N: ACE2: The key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: Demon or Angel? Viruses. 12:4912020. View Article : Google Scholar : | |
Romano M, Ruggiero A, Squeglia F, Maga G and Berisio R: A Structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells. 9:12672020. View Article : Google Scholar : | |
Kaye M, Druce J, Tran T, Kostecki R, Chibo D, Morris J, Catton M and Birch C: SARS-associated coronavirus replication in cell lines. Emerg Infect Dis. 12:128–133. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yap JKY, Moriyama M and Iwasaki A: Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol. 205:307–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Jiang L, Li X, Lin F, Wang Y, Li B, Jiang T, An W, Liu S, Liu H, et al: Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 5:e1380702020. View Article : Google Scholar : | |
Shah A: Novel coronavirus-induced NLRP3 Inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol. 11:10212020. View Article : Google Scholar : PubMed/NCBI | |
Coperchini F, Chiovato L, Croce L, Magri F and Rotondi M: The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 53:25–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Wang B and Mao J: The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li B, Song X and Zhou X: Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 127:1043702020. View Article : Google Scholar : PubMed/NCBI | |
Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM, Chan KS, Tan AT, Bertoletti A, Ooi EE, et al: A dynamic immune response shapes COVID-19 progression. Cell Host Microbe. 27:879–882.e2. 2020. View Article : Google Scholar : PubMed/NCBI | |
McKechnie JL and Blish CA: The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe. 27:863–869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thachil J and Srivastava A: SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: is it pulmonary thrombosis or pulmonary embolism? Semin Thromb Hemost. 46:777–780. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rapisarda V, Loreto C, Ledda C, Musumeci G, Bracci M, Santarelli L, Renis M, Ferrante M and Cardile V: Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549. Toxicol In Vitro. 29:551–557. 2015. View Article : Google Scholar : PubMed/NCBI | |
Armstrong SM, Wang C, Tigdi J, Si X, Dumpit C, Charles S, Gamage A, Moraes TJ and Lee WL: Influenza infects lung microvascular endothelium leading to microvascular leak: Role of apoptosis and claudin-5. PLoS One. 7:e473232012. View Article : Google Scholar : PubMed/NCBI | |
Ohmura T, Tian Y, Sarich N, Ke Y, Meliton A, Shah AS, Andreasson K, Birukov KG and Birukova AA: Regulation of lung endothelial permeability and inflammatory responses by prostaglandin A2: Role of EP4 receptor. Mol Biol Cell. 28:1622–1635. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, de Bree GJ, Bulle EB, Aronica EM, Florquin S, et al: Viral presence and immunopathology in patients with lethal COVID-19: A prospective autopsy cohort study. Lancet Microbe. 1:e290–e299. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmadpoor P and Rostaing L: Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transpl Int. 33:824–825. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, Jiang XM and Wang PH: Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients. J Med Virol. 92:1684–1689. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhou X, Zhu C, Song Y, Feng F, Qiu Y, Feng J, Jia Q, Song Q, Zhu B and Wang J: Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci. 7:1572020. View Article : Google Scholar | |
Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, et al: Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 71:2027–2034. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fathi N and Rezaei N: Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int. 44:1792–1797. 2020. View Article : Google Scholar : PubMed/NCBI | |
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, et al: Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 11:8272020. View Article : Google Scholar : PubMed/NCBI | |
De Biasi S: Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, Gozzi L, Iannone A, Lo Tartaro D, Mattioli M, et al Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with Covid-19 pneumonia. Nat Commun. 11:34342020. View Article : Google Scholar : PubMed/NCBI | |
Yaqinuddin A and Kashir J: Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Med Hypotheses. 140:1097772020. View Article : Google Scholar : PubMed/NCBI | |
Carvelli J, Demaria O, Vely F, Batista L, Benmansour NC, Fares J, Carpentier S, Thibult ML, Morel A, André P, et al: Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature. 588:146–150. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cully M: Immune status could determine efficacy of COVID-19 therapies. Nat Rev Drug Discov. 19:431–434. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y and Zhang Y: COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 5:1282020. View Article : Google Scholar : PubMed/NCBI | |
Mortaz E, Tabarsi P, Varahram M, Folkerts G and Adcock IM: The Immune Response and Immunopathology of COVID-19. Front Immunol. 11:20372020. View Article : Google Scholar : PubMed/NCBI | |
Yuki K, Fujiogi M and Koutsogiannaki S: COVID-19 pathophysiology: A review. Clin Immunol. 215:1084272020. View Article : Google Scholar : PubMed/NCBI | |
Yuen KS, Ye ZW, Fung SY, Chan CP and Jin DY: SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 10:402020. View Article : Google Scholar : PubMed/NCBI | |
Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, et al: Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect Dis. 20:1135–1140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C, Bertuzzi A, et al: Humanitas COVID-19 Task Force: Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 191:9–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, et al: The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 92:833–840. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zaim S, Chong JH, Sankaranarayanan V and Harky A: COVID-19 and multiorgan response. Curr Probl Cardiol. 45:1006182020. View Article : Google Scholar : PubMed/NCBI | |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yi Y, Lagniton PNP, Ye S, Li E and Xu RH: COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 16:1753–1766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X and Cao B: SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet. 395:1517–1520. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky PH, Behillil S, Gaymard A, Bouscambert-Duchamp M, Donati F, Le Hingrat Q, et al: Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect Dis. 20:697–706. 2020. View Article : Google Scholar : PubMed/NCBI | |
Endeman H, van der Zee P, van Genderen ME, van den Akker JPC and Gommers D: Progressive respiratory failure in COVID-19: A hypothesis. Lancet Infect Dis. 20:13652020. View Article : Google Scholar : PubMed/NCBI | |
de la Rica R, Borges M and Gonzalez-Freire M: COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 11:5588982020. View Article : Google Scholar : PubMed/NCBI | |
Channappanavar R and Perlman S: Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39:529–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Lu L, Cao W and Li T: Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 9:727–732. 2020. View Article : Google Scholar : PubMed/NCBI | |
Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, et al: A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 26:1623–1635. 2020. View Article : Google Scholar : PubMed/NCBI | |
Onofrio L, Caraglia M, Facchini G, Margherita V, Placido S and Buonerba C: Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA. 6:FSO6052020. View Article : Google Scholar : PubMed/NCBI | |
Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y and Satchi-Fainaro R: Immune-mediated approaches against COVID-19. Nat Nanotechnol. 15:630–645. 2020. View Article : Google Scholar : PubMed/NCBI | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med. 46:17–26. 2020.PubMed/NCBI | |
World Health Organization (WHO): Standard precautions in health care. https://www.who.int/publications/i/item/standard-precautions-in-health-care. Accessed September 30, 2007. | |
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dehelean CA, Lazureanu V, Coricovac D, Mioc M, Oancea R, Marcovici I, Pinzaru I, Soica C, Tsatsakis AM and Cretu O: SARS-CoV-2: Repurposed drugs and novel therapeutic approaches-insights into chemical structure-biological activity and toxicological screening. J Clin Med. 9:20842020. View Article : Google Scholar | |
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et al: ACTT-1 Study Group Members: Remdesivir for the treatment of Covid-19 - Final report. N Engl J Med. 383:1813–1826. 2020. View Article : Google Scholar : PubMed/NCBI | |
FDA: FDA Remdesivir update, 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19. Accessed December 1 2020. | |
World Health Organization (WHO): WHO recommends against the use of remdesivir in COVID-19 patients. https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients. Accessed November 20 2020. | |
European Medicines Agency (EMA): Update on remdesivir -EMA will evaluate new data from Solidarity trial. https://www.ema.europa.eu/en/news/update-remdesivir-ema-will-evaluate-new-data-solidarity-trial. Accessed November 20 2020. | |
World Health Organization (WHO): Therapeutics and COVID-19: living guideline. https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline. Accessed November 20 2020. | |
Nicola M, O'Neill N, Sohrabi C, Khan M, Agha M and Agha R: Evidence based management guideline for the COVID-19 pandemic - Review article. Int J Surg. 77:206–216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kakodkar P, Kaka N and Baig MN: A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 12:e75602020.PubMed/NCBI | |
Bimonte S, Crispo A, Amore A, Celentano E, Cuomo A and Cascella M: Potential antiviral drugs for SARS-Cov-2 treatment: Preclinical findings and ongoing clinical research. In Vivo (Brooklyn). 34:1597–1602. 2020. View Article : Google Scholar | |
World Health Organization (WHO): Clinical management of COVID-19. https://www.who.int/publications/i/item/clinical-management-of-covid-19. Accessed May 20 2020. | |
Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Libra M and Stefani S: Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med. 46:957–964. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, Ullah H, Yang Y, Zhang Q, Wang X, et al: ddPCR: A more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect. 9:1259–1268. 2020. View Article : Google Scholar : PubMed/NCBI | |
European Medicines Agency (EMA): Treatments and vaccines for COVID-19. https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines-covid-19. Last updated November 26 2020. | |
Kim YC, Dema B and Reyes-Sandoval A: COVID-19 vaccines: Breaking record times to first-in-human trials. NPJ Vaccines. 5:342020. View Article : Google Scholar : PubMed/NCBI | |
Calina D, Docea AO, Petra k is D, Egorov A M, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): Draft landscape of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. Accessed December 8 2020. | |
Li X, Geng M, Peng Y, Meng L and Lu S: Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Wang L, Kuo HD, Shannar A, Peter R, Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, et al: An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep. 6:1–15. 2020. View Article : Google Scholar | |
Magro G: COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Virus Res. 286:1980702020. View Article : Google Scholar : PubMed/NCBI | |
Rosa SGV and Santos WC: Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 44:e402020. View Article : Google Scholar : PubMed/NCBI | |
Lythgoe MP and Middleton P: Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 41:363–382. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Gupta PK and Srivastava A: A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab Syndr. 14:569–573. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rossman H, Keshet A, Shilo S, Gavrieli A, Bauman T, Cohen O, Shelly E, Balicer R, Geiger B, Dor Y, et al: A framework for identifying regional outbreak and spread of COVID-19 from one-minute population-wide surveys. Nat Med. 26:634–638. 2020. View Article : Google Scholar : PubMed/NCBI | |
European Bioinformatics Institute (EBI): European Molecular Biology Laboratory (EMBL): EMBL-EBI launches COVID-19 Data Portal. https://www.ebi.ac.uk/about/news/press-releases/embl-ebi-launches-covid-19-data-portal. Accessed April 18 2020. | |
National Institutes of Health (NIH): National Library Of Medicine, National Center for Biotechnology Information (NCBI):SARS-CoV-2 Data. https://www.ncbi.nlm.nih.gov/sars-cov-2/. | |
White House Office, US Department of Energy, IBM: The COVID-19 high performance computing consortium. https://covid19-hpc-consortium.org/. | |
Kiyotani K, Toyoshima Y, Nemoto K and Nakamura Y: Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet. 65:569–575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quimque MTJ, Notarte KIR, Fernandez RAT, Mendoza MAO, Liman RAD, Lim JAK, Pilapil LAE, Ong JKH, Pastrana AM, Khan A, et al: Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J Biomol Struct Dyn. Jun 16–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Wang J: Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model. 60:3277–3286. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, Blecher-Gonen R, Cohen M, Medaglia C, Li H, et al: Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell. 181:1475–1488.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Hou Y, Shen J, Huang Y, Martin W and Cheng F: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6:142020. View Article : Google Scholar : PubMed/NCBI | |
Veljkovic V, Perovic V and Paessler S: Prediction of the effectiveness of COVID-19 vaccine candidates. F1000 Res. 9:3652020. View Article : Google Scholar | |
Russo G, Pennisi M, Viceconti M and Pappalardo F: In silico trial to test COVID-19 candidate vaccines: a case study with UISS platform. arXiv:2005.02289. | |
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM and Srivastava AP: A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep. 10:108952020. View Article : Google Scholar : PubMed/NCBI | |
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea A, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI | |
Ledda C, Loreto C, Zammit C, Marconi A, Fago L, Matera S, Costanzo V, Fuccio Sanzà G, Palmucci S, Ferrante M, et al: Non-infective occupational risk factors for hepatocellular carcinoma: A review (Review). Mol Med Rep. 15:511–533. 2017. View Article : Google Scholar | |
Falzone L, Marconi A, Loreto C, Franco S, Spandidos DA and Libra M: Occupational exposure to carcinogens: Benzene, pesticides and fibers (Review). Mol Med Rep. 14:4467–4474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wargo JA, Reuben A, Cooper ZA, Oh KS and Sullivan RJ: Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Semin Oncol. 42:601–616. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tan J and Yang C: Prevention and control strategies for the diagnosis and treatment of cancer patients during the COVID-19 pandemic. Br J Cancer. 123:5–6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garassino MC, Whisenant JG, Huang L-C, Trama A, Torri V, Agustoni F, Baena J, Banna G, Berardi R, Bettini AC, et al: TERAVOLT investigators: COVID-19 in patients with thoracic malignancies (TERAVOLT): First results of an international, registry-based, cohort study. Lancet Oncol. 21:914–922. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Zhang L: Risk of COVID-19 for patients with cancer. Lancet Oncol. 21:e1812020. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, et al: Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 21:335–337. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kuderer NM, Choueiri TK, Shah DP, Shyr Y, Rubinstein SM, Rivera DR, Shete S, Hsu CY, Desai A, de Lima Lopes G Jr, et al: COVID-19 and Cancer Consortium: Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet. 395:1907–1918. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee LY, Cazier J-B, Angelis V, Arnold R, Bisht V, Campton NA, Chackathayil J, Cheng VW, Curley HM, Fittall MW, et al: UK Coronavirus Monitoring Project Team: COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet. 395:1919–1926. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee LYW, Cazier J-B, Starkey T, Briggs SEW, Arnold R, Bisht V, Booth S, Campton NA, Cheng VWT, Collins G, et al: UK Coronavirus Cancer Monitoring Project Team: COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demo-graphics: A prospective cohort study. Lancet Oncol. 21:1309–1316. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, Zhang Z, You H, Wu M, Zheng Q, et al: Patients with cancer appear more vulnerable to SARS-COV-2: A multi-center study during the COVID-19 outbreak. Cancer Discov. 10:783–791. 2020.PubMed/NCBI | |
Robilotti EV, Babady NE, Mead PA, Rolling T, Perez-Johnston R, Bernardes M, Bogler Y, Caldararo M, Figueroa CJ, Glickman MS, et al: Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 26:1218–1223. 2020. View Article : Google Scholar : PubMed/NCBI | |
Horn L, Whisenant JG, Torri V, Huang L-C, Trama A, Paz-Ares LG, Felip E, Pancaldi V, De Toma A, Tiseo M, et al: Thoracic Cancers International COVID-19 Collaboration (TERAVOLT): Impact of type of cancer therapy and COVID therapy on survival. J Clin Oncol. 38(Suppl 18): LBA1112020. View Article : Google Scholar | |
Russell B, Moss C, Papa S, Irshad S, Ross P, Spicer J, Kordasti S, Crawley D, Wylie H, Cahill F, et al: Factors affecting COVID-19 outcomes in cancer patients: a first report from guy's cancer center in London. Front Oncol. 10:12792020. View Article : Google Scholar : PubMed/NCBI | |
Banna G, Curioni-Fontecedro A, Friedlaender A and Addeo A: How we treat patients with lung cancer during the SARS-CoV-2 pandemic: Primum non nocere. ESMO Open. 5(Suppl 2): e0007652020. | |
Derosa L, Melenotte C, Griscelli F, Gachot B, Marabelle A, Kroemer G and Zitvogel L: The immuno-oncological challenge of COVID-19. Nat Cancer. 1:946–964. 2020. View Article : Google Scholar | |
Darvin P, Toor SM, Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
La-Beck NM, Nguyen DT, Le AD, Alzghari SK and Trinh ST: Optimizing Patient Outcomes with PD-1/PD-L1 Immune Checkpoint Inhibitors for the First-Line Treatment of Advanced Non-Small Cell Lung Cancer. Pharmacotherapy. 40:239–255. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leonardi GC, Candido S, Falzone L, Spandidos DA and Libra M: Cutaneous melanoma and the immunotherapy revolution (Review). Int J Oncol. 57:609–618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Salomone S and Libra M: Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI | |
Christofi T, Baritaki S, Falzone L, Libra M and Zaravinos A: Current perspectives in cancer immunotherapy. Cancers (Basel). 11:14722019. View Article : Google Scholar | |
May JE, Donaldson C, Gynn L and Morse HR: Chemotherapy-induced genotoxic damage to bone marrow cells: Long-term implications. Mutagenesis. 33:241–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shah NJ, Al-Shbool G, Blackburn M, Cook M, Belouali A, Liu SV, Madhavan S, He AR, Atkins MB, Gibney GT, et al: Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother Cancer. 7:3532019. View Article : Google Scholar : PubMed/NCBI | |
Das S and Johnson DB: Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 7:3062019. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Cao M, Antonazas-Basa M, Puertolas T, Munoz-Consuelo E, Manzano JL, Carrera C, Marquez-Rodas I, Lopez-Criado P, Rodriguez-Moreno JF, Garcia-Castano A, et al: Cancer immunotherapy does not increase the risk of death by COVID-19 in melanoma patients. MedRxiv. https://doi.org/10.1101/2020.05.19.20106971. | |
Hotchkiss RS, Colston E, Yende S, Crouser ED, Martin GS, Albertson T, Bartz RR, Brakenridge SC, Delano MJ, Park PK, et al: Immune checkpoint inhibition in sepsis: A Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 45:1360–1371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL, Crouser ED, Martin GS, Coopersmith CM, Brakenridge S, Mayr FB, et al: Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med. 47:632–642. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chong CR, Park VJ, Cohen B, Postow MA, Wolchok JD and Kamboj M: Safety of inactivated influenza vaccine in cancer patients receiving immune checkpoint inhibitors. Clin Infect Dis. 70:193–199. 2020. View Article : Google Scholar : | |
Bayle A, Khettab M, Lucibello F, Chamseddine AN, Goldschmidt V, Perret A, Ropert S, Scotté F, Loulergue P and Mir O: Immunogenicity and safety of influenza vaccination in cancer patients receiving checkpoint inhibitors targeting PD-1 or PD-L1. Ann Oncol. 31:959–961. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gatto L, Franceschi E, Nunno VD and Brandes AA: Potential protective and therapeutic role of immune checkpoint inhibitors against viral infections and COVID-19. Immunotherapy. 12:1111–1114. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vivarelli S, Falzone L, Grillo CM, Scandurra G, Torino F and Libra M: Cancer management during COVID-19 pandemic: is immune checkpoint inhibitors-based immunotherapy harmful or beneficial? Cancers (Basel). 12:22372020. View Article : Google Scholar | |
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y and Tian Z: Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 17:533–535. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang XC, Yang XP, Dong XQ and Zheng YT: Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 17:541–543. 2020. View Article : Google Scholar : PubMed/NCBI | |
Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, et al: Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 181:1489–1501.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–687. 2006. View Article : Google Scholar | |
Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 443:350–354. 2006. View Article : Google Scholar : PubMed/NCBI | |
Magro G: SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the 'culprit lesion' of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X. 2:1000292020. View Article : Google Scholar : PubMed/NCBI | |
Di Cosimo S, Malfettone A, Pérez-García J M, Llombart-Cussac A, Miceli R, Curigliano G and Cortés J: Immune checkpoint inhibitors: A physiology-driven approach to the treatment of coronavirus disease 2019. Eur J Cancer. 135:62–65. 2020. View Article : Google Scholar : PubMed/NCBI | |
Riva G, Nasillo V, Tagliafico E, Trenti T and Luppi M: COVID-19: Room for treating T cell exhaustion? Crit Care. 24:2292020. View Article : Google Scholar : PubMed/NCBI | |
Buonaguro FM, Puzanov I and Ascierto PA: Anti-IL6R role in treatment of COVID-19-related ARDS. COVID-19: Room for treating T cell exhaustion? J Transl Med. 18:1652020. View Article : Google Scholar | |
Arnaldez FI, O'Day SJ, Drake CG, Fox BA, Fu B, Urba WJ, Montesarchio V, Weber JS, Wei H, Wigginton JM, et al: The Society for Immunotherapy of Cancer perspective on regulation of interleukin-6 signaling in COVID-19-related systemic inflammatory response. J Immunother Cancer. 8:e0009302020. View Article : Google Scholar : PubMed/NCBI | |
Maio M, Hamid O, Larkin J, Covre A, Altomonte M, Calabrò L, Vardhana SA, Robert C, Ibrahim R, Anichini A, et al: Immune checkpoint inhibitors for cancer therapy in the COVID-19 era. Clin Cancer Res. 26:4201–4205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salvestrini V, Sell C and Lorenzini A: Obesity may accelerate the aging process. Front Endocrinol (Lausanne). 10:2662019. View Article : Google Scholar |