Novel therapies for malignant pleural effusion: Anti‑angiogenic therapy and immunotherapy (Review)
- Authors:
- Dan He
- Ruilin Ding
- Qinglian Wen
- Longxia Chen
-
Affiliations: College of Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, P.R. China, Institute of Drug Clinical Trial/GCP Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: January 22, 2021 https://doi.org/10.3892/ijo.2021.5174
- Pages: 359-370
This article is mentioned in:
Abstract
Clive AO, Kahan BC, Hooper CE, Bhatnagar R, Morley AJ, Zahan-Evans N, Bintcliffe OJ, Boshuizen RC, Fysh ETH, Tobin CL, et al: Predicting survival in malignant pleural effusion: Development and validation of the LENT prognostic score. Thorax. 69:1098–1104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sabang RL, Gandhiraj D, Fanucchi M and Epelbaum O: Role of bevacizumab in the management of the patient with malignant pleural effusion: More questions than answers. Expert Rev Respir Med. 12:87–94. 2018. View Article : Google Scholar | |
Tao H, Meng Q, Li M, Shi L, Tang J and Liu Z: Outcomes of bevacizumab combined with chemotherapy in lung adenocarcinoma-induced malignant pleural effusion. Thorac Cancer. 9:298–304. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marquez-Medina D and Popat S: Closing faucets: The role of anti-angiogenic therapies in malignant pleural diseases. Clin Transl Oncol. 18:760–768. 2016. View Article : Google Scholar | |
Donnenberg AD, Luketich JD, Dhupar R and Donnenberg VS: Treatment of malignant pleural effusions: The case for localized immunotherapy. J Immunother Cancer. 7:110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen YM, Yang WK, Whang-Peng J, Kuo BI and Perng RP: Elevation of interleukin-10 levels in malignant pleural effusion. Chest. 110:433–436. 1996. View Article : Google Scholar : PubMed/NCBI | |
Thomas R, Cheah HM, Creaney J, Turlach BA and Lee YCG: Longitudinal Measurement of Pleural Fluid Biochemistry and Cytokines in Malignant Pleural Effusions. Chest. 149:1494–1500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hooper CE, Elvers KT, Welsh GI, Millar AB and Maskell NA: VEGF and sVEGFR-1 in malignant pleural effusions: Association with survival and pleurodesis outcomes. Lung Cancer. 77:443–449. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fiorelli A, Vicidomini G, Di Domenico M, Napolitano F, Messina G, Morgillo F, Ciardiello F and Santini M: Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 12:420–424. 2011. View Article : Google Scholar | |
Murthy V, Katzman D and Sterman DH: Intrapleural immunotherapy: An update on emerging treatment strategies for pleural malignancy. Clin Respir J. 13:272–279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stathopoulos GT and Kalomenidis I: Malignant pleural effusion: Tumor-host interactions unleashed. Am J Respir Crit Care Med. 186:487–492. 2012. View Article : Google Scholar : PubMed/NCBI | |
Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka M, Zazara DE, Lilis I, et al: Mast cells mediate malignant pleural effusion formation. J Clin Invest. 125:2317–2334. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nie K, Zhang Z, You Y, Zhuang X, Zhang C and Ji Y: A randomized clinical study to compare intrapleural infusion with intravenous infusion of bevacizumab in the management of malignant pleural effusion in patients with non-small-cell lung cancer. Thorac Cancer. 11:8–14. 2020. View Article : Google Scholar | |
Sack U, Hoffmann M, Zhao XJ, Chan KS, Hui DSC, Gosse H, Engelmann L, Schauer J, Emmrich F and Hoheisel G: Vascular endothelial growth factor in pleural effusions of different origin. Eur Respir J. 25:600–604. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lieser EAT, Croghan GA, Nevala WK, Bradshaw MJ, Markovic SN and Mansfield AS: Up-regulation of pro-angiogenic factors and establishment of tolerance in malignant pleural effusions. Lung Cancer. 82:63–68. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Mathy NW and Lu H: The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with non small cell lung cancer (Review). Mol Med Rep. 17:8019–8030. 2018.PubMed/NCBI | |
Gkiozos I, Tsagouli S, Charpidou A, Grapsa D, Kainis E, Gratziou C and Syrigos K: Levels of vascular endothelial growth factor in serum and pleural fluid are independent predictors of survival in advanced non-small cell lung cancer: Results of a prospective study. Anticancer Res. 35:1129–1137. 2015.PubMed/NCBI | |
Zhang Y, Yu L-K, Lu G-J, Xia N, Xie H-Y, Hu W, Hao K-K, Xu C-H and Qian Q: Prognostic values of VEGF and endostatin with malignant pleural effusions in patients with lung cancer. Asian Pac J Cancer Prev. 15:8435–8440. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE and Woolard J: Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci. 19:12642018. View Article : Google Scholar : | |
Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, Ling FY, Wei GS, Ying T, Chellian J, et al: The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers: A review. Biomed Pharmacother. 102:1127–1144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Assoun S, Brosseau S, Steinmetz C, Gounant V and Zalcman G: Bevacizumab in advanced lung cancer: State of the art. Future Oncol. 13:2515–2535. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Hurwitz H: Combinations of Bevacizumab With Cancer Immunotherapy. Cancer J. 24:193–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bradshaw M, Mansfield A and Peikert T: The role of vascular endothelial growth factor in the pathogenesis, diagnosis and treatment of malignant pleural effusion. Curr Oncol Rep. 15:207–216. 2013. View Article : Google Scholar : PubMed/NCBI | |
Usui K, Sugawara S, Nishitsuji M, Fujita Y, Inoue A, Mouri A, Watanabe H, Sakai H, Kinoshita I, Ohhara Y, et al North East Japan Study Group: A phase II study of bevacizumab with carboplatin-pemetrexed in non-squamous non-small cell lung carcinoma patients with malignant pleural effusions: North East Japan Study Group Trial NEJ013A. Lung Cancer. 99:131–136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tamiya M, Tamiya A, Yamadori T, Nakao K, Asami K, Yasue T, Otsuka T, Shiroyama T, Morishita N, Suzuki H, et al: Phase2 study of bevacizumab with carboplatin-paclitaxel for non-small cell lung cancer with malignant pleural effusion. Med Oncol. 30:676. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qi N, Li F, Li X, Kang H, Zhao H and Du N: Combination use of paclitaxel and avastin enhances treatment effect for the NSCLC patients with malignant pleural effusion. Medicine (Baltimore). 95:e5392. 2016. View Article : Google Scholar | |
Du N, Li X, Li F, Zhao H, Fan Z, Ma J, Fu Y and Kang H: Intrapleural combination therapy with bevacizumab and cisplatin for non-small cell lung cancer mediated malignant pleural effusion. Oncol Rep. 29:2332–2340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zheng Y and Fang Z: The clinical efficacy and safety of paclitaxel combined with avastin for NSCLC patients diagnosed with malignant pleural effusion. Rev Assoc Med Bras (1992). 64:230–233. 2018. View Article : Google Scholar | |
Kitamura K, Kubota K, Ando M, Takahashi S, Nishijima N, Sugano T, Toyokawa M, Miwa K, Kosaihira S, Noro R, et al: Bevacizumab plus chemotherapy for advanced non-squamous non-small-cell lung cancer with malignant pleural effusion. Cancer Chemother Pharmacol. 71:457–461. 2013. View Article : Google Scholar | |
Masago K, Fujimoto D, Fujita S, Hata A, Kaji R, Ohtsuka K, Okuda C, Takeshita J and Katakami N: Response to bevacizumab combination chemotherapy of malignant pleural effusions associated with non-squamous non-small-cell lung cancer. Mol Clin Oncol. 3:415–419. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Song X, Shi F, Zhu H, Wang H, Zhang N, Zhang Y, Kong L and Yu J: Greater efficacy of intracavitary infusion of bevacizumab compared to traditional local treatments for patients with malignant cavity serous effusion. Oncotarget. 8:35262–35271. 2017. View Article : Google Scholar : | |
Jiang L, Li P, Gong Z, Hu B, Ma J, Wang J, Chu H, Zhang L, Sun P and Chen J: Effective Treatment for Malignant Pleural Effusion and Ascites with Combined Therapy of Bevacizumab and Cisplatin. Anticancer Res. 36:1313–1318. 2016.PubMed/NCBI | |
Song X, Chen D, Guo J, Kong L, Wang H and Wang Z: Better efficacy of intrapleural infusion of bevacizumab with pemetrexed for malignant pleural effusion mediated from nonsquamous non-small cell lung cancer. OncoTargets Ther. 11:8421–8426. 2018. View Article : Google Scholar | |
Zongwen S, Song K, Cong Z, Tian F and Yan Z: Evaluation of efficacy and safety for bevacizumab in treating malignant pleural effusions caused by lung cancer through intrapleural injection. Oncotarget. 8:113318–113330. 2017. View Article : Google Scholar | |
Jiang T, Li A, Su C, Li X, Zhao C, Ren S, Zhou C and Zhang J: Addition of bevacizumab for malignant pleural effusion as the manifestation of acquired EGFR-TKI resistance in NSCLC patients. Oncotarget. 8:62648–62657. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian P, Shen Y, Feng M, Zhu J, Song H, Wan C, Chen L and Wen F: Diagnostic accuracy of endostatin for malignant pleural effusion: A clinical study and meta-analysis. Postgrad Med. 127:529–534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Sun Y, Liu Y, Yu Q, Zhang Y, Li K, Zhu Y, Zhou Q, Hou M, Guan Z, et al: Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi. 8:283–290. 2005.In Chinese. PubMed/NCBI | |
Jie Wang X, Miao K, Luo Y, Li R, Shou T, Wang P and Li X: Randomized controlled trial of endostar combined with cisplatin/pemetrexed chemotherapy for elderly patients with advanced malignant pleural effusion of lung adenocarcinoma. J BUON. 23:92–97. 2018.PubMed/NCBI | |
Zhao WY, Chen DY, Chen JH and Ji ZN: Effects of intracavitary administration of Endostar combined with cisplatin in malignant pleural effusion and ascites. Cell Biochem Biophys. 70:623–628. 2014. View Article : Google Scholar : PubMed/NCBI | |
Biaoxue R, Xiguang C, Hua L, Wenlong G and Shuanying Y: Thoracic perfusion of recombinant human endostatin (Endostar) combined with chemotherapeutic agents versus chemotherapeutic agents alone for treating malignant pleural effusions: A systematic evaluation and meta-analysis. BMC Cancer. 16:888. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matsumori Y, Yano S, Goto H, Nakataki E, Wedge SR, Ryan AJ and Sone S: ZD6474, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, inhibits growth of experimental lung metastasis and production of malignant pleural effusions in a non-small cell lung cancer model. Oncol Res. 16:15–26. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ikuta K, Yano S, Trung VT, Hanibuchi M, Goto H, Li Q, Wang W, Yamada T, Ogino H, Kakiuchi S, et al: E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res. 15:7229–7237. 2009. View Article : Google Scholar : PubMed/NCBI | |
Massarelli E, Onn A, Marom EM, Alden CM, Liu DD, Tran HT, Mino B, Wistuba II, Faiz SA, Bashoura L, et al: Vandetanib and indwelling pleural catheter for non-small-cell lung cancer with recurrent malignant pleural effusion. Clin Lung Cancer. 15:379–386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mulder SF, Boers-Sonderen MJ, van der Heijden HFM, Vissers KCP, Punt CJA and van Herpen CML: A phase II study of cediranib as palliative treatment in patients with symptomatic malignant ascites or pleural effusion. Target Oncol. 9:331–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Shen Y, Ruan M, Li M and Chen L: Notable decrease of malignant pleural effusion after treatment with sorafenib in radioiodine-refractory follicular thyroid carcinoma. Thyroid. 24:1179–1183. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takemoto S, Fukuda M, Yamaguchi H, Ikeda T, Akagi K, Tomono H, Umeyama Y, Dotsu Y, Taniguchi H, Gyotoku H, et al: Phase II study of ramucirumab and docetaxel for previously treated non-small cell lung cancer patients with malignant pleural effusion: Protocol of PLEURAM study. Thorac Cancer. 11:389–393. 2020. View Article : Google Scholar | |
Murthy P, Ekeke CN, Russell KL, Butler SC, Wang Y, Luketich JD, Soloff AC, Dhupar R and Lotze MT: Making cold malignant pleural effusions hot: Driving novel immunotherapies. OncoImmunology. 8:e1554969. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ross SH and Cantrell DA: Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol. 36:411–433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Minor DR, Moores SP and Chan JK: Prolonged survival after intraperitoneal interleukin-2 immunotherapy for recurrent ovarian cancer. Gynecol Oncol Rep. 22:43–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Astoul P, Viallat JR, Laurent JC, Brandely M and Boutin C: Intrapleural recombinant IL-2 in passive immunotherapy for malignant pleural effusion. Chest. 103:209–213. 1993. View Article : Google Scholar : PubMed/NCBI | |
Castagneto B, Zai S, Mutti L, Lazzaro A, Ridolfi R, Piccolini E, Ardizzoni A, Fumagalli L, Valsuani G and Botta M: Palliative and therapeutic activity of IL-2 immunotherapy in unresectable malignant pleural mesothelioma with pleural effusion: Results of a phase II study on 31 consecutive patients. Lung Cancer. 31:303–310. 2001. View Article : Google Scholar : PubMed/NCBI | |
Viallat JR, Boutin C, Rey F, Astoul P, Farisse P and Brandely M: Intrapleural immunotherapy with escalating doses of interleukin-2 in metastatic pleural effusions. Cancer. 71:4067–4071. 1993. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Abo S, Kitamura M, Hashimoto M and Izumi K: The intrapleural administration of recombinant interleukin-2 (rIL-2) to patients with malignant pleural effusion: Clinical trials. Surg Today. 23:1053–1059. 1993. View Article : Google Scholar : PubMed/NCBI | |
Han L, Jiang Q, Yao W, Fu T and Zeng Q: Thoracic injection of low-dose interleukin-2 as an adjuvant therapy improves the control of the malignant pleural effusions: A systematic review and meta-analysis base on Chinese patients. BMC Cancer. 18:725. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu CY, Zhang YH, Wang T, Chen L, Gong ZH, Wan YS, Li QJ, Li YS and Zhu B: Interleukin-2 reverses CD8(+) T cell exhaustion in clinical malignant pleural effusion of lung cancer. Clin Exp Immunol. 186:106–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu X-Z, Zhai K, Yi F-S, Wang Z, Wang W, Wang Y, Pei X-B, Shi X-Y, Xu L-L and Shi HZ: IL-10 promotes malignant pleural effusion in mice by regulating TH 1- and TH 17-cell differentiation and migration. Eur J Immunol. 49:653–665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Lin H, Zhai K, Wang X, Zhou Q and Shi H: Interleukin-17 inhibits development of malignant pleural effusion via interleukin-9-dependent mechanism. Sci China Life Sci. 59:1297–1304. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li S, You W-J, Zhang J-C, Zhou Q and Shi H-Z: Immune Regulation of Interleukin-27 in Malignant Pleural Effusion. Chin Med J (Engl). 128:1932–1941. 2015. View Article : Google Scholar | |
Li Q, Sun W, Yuan D, Lv T, Yin J, Cao E, Xiao X and Song Y: Efficacy and safety of recombinant human tumor necrosis factor application for the treatment of malignant pleural effusion caused by lung cancer. Thorac Cancer. 7:136–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Antoniou KM, Ferdoutsis E and Bouros D: Interferons and their application in the diseases of the lung. Chest. 123:209–216. 2003. View Article : Google Scholar : PubMed/NCBI | |
Goldman CA, Skinnider LF and Maksymiuk AW: Interferon instillation for malignant pleural effusions. Ann Oncol. 4:141–145. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sartori S, Tassinari D, Ceccotti P, Tombesi P, Nielsen I, Trevisani L and Abbasciano V: Prospective randomized trial of intrapleural bleomycin versus interferon alfa-2b via ultrasound-guided small-bore chest tube in the palliative treatment of malignant pleural effusions. J Clin Oncol. 22:1228–1233. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A, Kapoor V, Sun J, Hodinka R, Brown JL, et al: A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: High rate of antitumor immune responses. Clin Cancer Res. 13:4456–4466. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sterman DH, Recio A, Haas AR, Vachani A, Katz SI, Gillespie CT, Cheng G, Sun J, Moon E, Pereira L, et al: A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther. 18:852–860. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sterman DH, Alley E, Stevenson JP, Friedberg J, Metzger S, Recio A, Moon EK, Haas AR, Vachani A, Katz SI, et al: Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFNa Combined with Chemotherapy. Clin Cancer Res. 22:3791–3800. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal C, Haas AR, Metzger S, Aguilar LK, Aguilar-Cordova E, Manzanera AG, Gômez-Hernandez G, Katz SI, Alley EW, Evans TL, et al: Phase I Study of Intrapleural Gene-Mediated Cytotoxic Immunotherapy in Patients with Malignant Pleural Effusion. Mol Ther. 26:1198–1205. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hwang WL, Pike LRG, Royce TJ, Mahal BA and Loeffler JS: Safety of combining radiotherapy with immune-checkpoint inhibition. Nat Rev Clin Oncol. 15:477–494. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lehrer EJ, McGee HM, Peterson JL, Vallow L, Ruiz-Garcia H, Zaorsky NG, Sharma S and Trifiletti DM: Stereotactic Radiosurgery and Immune Checkpoint Inhibitors in the Management of Brain Metastases. Int J Mol Sci. 19:30542018. View Article : Google Scholar : | |
Kamath SD and Kumthekar PU: Immune Checkpoint Inhibitors for the Treatment of Central Nervous System (CNS) Metastatic Disease. Front Oncol. 8:414. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Govindan R, Szczesna A, Ahn M-J, Schneider C-P, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, et al: Phase III Trial of Ipilimumab Combined With Paclitaxel and Carboplatin in Advanced Squamous Non-Small-Cell Lung Cancer. J Clin Oncol. 35:3449–3457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shibaki R, Murakami S, Shinno Y, Matsumoto Y, Goto Y, Kanda S, Horinouchi H, Fujiwara Y, Motoi N, Yamamoto N, et al: Malignant pleural effusion as a predictor of the efficacy of anti-PD-1 antibody in patients with non-small cell lung cancer. Thorac Cancer. 10:815–822. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawachi H, Tamiya M, Tamiya A, Ishii S, Hirano K, Matsumoto H, Fukuda Y, Yokoyama T, Kominami R, Fujimoto D, et al: Association between metastatic sites and first-line pembrolizumab treatment outcome for advanced non-small cell lung cancer with high PD-L1 expression: A retrospective multicenter cohort study. Invest New Drugs. 38:211–218. 2020. View Article : Google Scholar | |
Grosu HB, Arriola A, Stewart J, Ma J, Bassett R, Hernandez M, Ost D and Roy-Chowdhuri S: PD-L1 detection in histology specimens and matched pleural fluid cell blocks of patients with NSCLC. Respirology. 24:1198–1203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prado-Garcia H, Romero-Garcia S, Puerto-Aquino A and Rumbo-Nava U: The PD-L1/PD-1 pathway promotes dysfunction, but not 'exhaustion', in tumor-responding T cells from pleural effusions in lung cancer patients. Cancer Immunol Immunother. 66:765–776. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weibel S, Hofmann E, Basse-Luesebrink TC, Donat U, Seubert C, Adelfinger M, Gnamlin P, Kober C, Frentzen A, Gentschev I, et al: Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer. J Transl Med. 11:106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, et al: Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI | |
Danson SJ, Conner J, Edwards JG, Blyth KG, Fisher PM, Muthana M, Salawu A, Taylor F, Hodgkinson E, Joyce P, et al: Oncolytic herpesvirus therapy for mesothelioma - A phase I/IIa trial of intrapleural administration of HSV1716. Lung Cancer. 150:145–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA and Mitchell DA: The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang G-C, Lan H-C, Juang S-H, Wu Y-C, Lee H-C, Hung Y-M, Yang H-Y, Whang-Peng J and Liu K-J: A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer. 103:763–771. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morisaki T, Matsumoto K, Kuroki H, Kubo M, Baba E, Onishi H, Tasaki A, Nakamura M, Inaba S and Katano M: Combined immunotherapy with intracavital injection of activated lymphocytes, monocyte-derived dendritic cells and low-dose OK-432 in patients with malignant effusion. Anticancer Res. 23:4459–4465. 2003.PubMed/NCBI | |
Gu F-F, Wu J-J, Liu Y-Y, Hu Y, Liang J-Y, Zhang K, Li M, Wang Y, Zhang Y-A and Liu L: Human inflammatory dendritic cells in malignant pleural effusions induce Th1 cell differentiation. Cancer Immunol Immunother. 69:779–788. 2020. View Article : Google Scholar : PubMed/NCBI | |
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK and Brown CE: CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev. 290:60–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al: Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 371:1507–1517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O'Connor RS, Hwang WT, et al: Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 24:563–571. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heng G, Jia J, Li S, Fu G, Wang M, Qin D, Li Y, Pei L, Tian X, Zhang J, et al: Sustained Therapeutic Efficacy of Humanized Anti-CD19 Chimeric Antigen Receptor T Cells in Relapsed/Refractory Acute Lymphoblastic Leukemia. Clin Cancer Res. 26:1606–1615. 2020. View Article : Google Scholar | |
Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, Abedi M, Davies RA, Cabral HJ, Al-Homsi AS, et al: Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response. Prostate. 76:1257–1270. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, et al: Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol. 33:1688–1696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beatty GL, O'Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM, et al: Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology. 155:29–32. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scherpereel A, Grigoriu BD, Noppen M, Gey T, Chahine B, Baldacci S, Trauet J, Copin MC, Dessaint JP, Porte H, et al: Defect in recruiting effector memory CD8+ T-cells in malignant pleural effusions compared to normal pleural fluid. BMC Cancer. 13:3242013. View Article : Google Scholar : PubMed/NCBI | |
Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crino L and Mazza M: Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front Oncol. 9:15192020. View Article : Google Scholar : PubMed/NCBI | |
Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE and Schenk M: Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Front Immunol. 11:21052020. View Article : Google Scholar : PubMed/NCBI | |
Wouters MCA and Nelson BH: Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clin Cancer Res. 24:6125–6135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chu H, Du F, Gong Z, Lian P, Wang Z, Li P, Hu B, Chi C and Chen J: Better Clinical Efficiency of TILs for Malignant Pleural Effusion and Ascites than Cisplatin Through Intrapleural and Intraperitoneal Infusion. Anticancer Res. 37:4587–4591. 2017.PubMed/NCBI |