1
|
Dimova DK and Dyson NJ: The E2F
transcriptional network: Old acquaintances with new faces.
Oncogene. 24:2810–2826. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeGregori J and Johnson DG: Distinct and
overlapping roles for E2F family members in transcription,
proliferation and apoptosis. Curr Mol Med. 6:739–748.
2006.PubMed/NCBI
|
3
|
Iaquinta PJ and Lees JA: Life and death
decisions by the E2F transcription factors. Curr Opin Cell Biol.
19:649–657. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kent LN and Leone G: The broken cycle: E2F
dysfunction in cancer. Nat Rev Cancer. 19:326–338. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Herrscher RF, Kaplan MH, Lelsz DL, Das C,
Scheuermann R and Tucker PW: The immunoglobulin heavy-chain
matrix-associating regions are bound by Bright: A B cell-specific
trans-activator that describes a new DNA-binding protein family.
Genes Dev. 9:3067–3082. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kortschak RD, Reimann H, Zimmer M, Eyre
HJ, Saint R and Jenne DE: The human dead ringer/bright homolog,
DRIL1: cDNA cloning, gene structure, and mapping to D19S886, a
marker on 19p13.3 that is strictly linked to the Peutz-Jeghers
syndrome. Genomics. 51:288–292. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Suzuki M, Okuyama S, Okamoto S, Shirasuna
K, Nakajima T, Hachiya T, Nojima H, Sekiya S and Oda K: A novel E2F
binding protein with Myc-type HLH motif stimulates E2F-dependent
transcription by forming a heterodimer. Oncogene. 17:853–865. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Peeper DS, Shvarts A, Brummelkamp T, Douma
S, Koh EY, Daley GQ and Bernards R: A functional screen identifies
hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell
Biol. 4:148–153. 2002. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Numata S, Claudio PP, Dean C, Giordano A
and Croce CM: Bdp, a new member of a family of DNA-binding
proteins, associates with the retinoblastoma gene product. Cancer
Res. 59:3741–3747. 1999.PubMed/NCBI
|
10
|
Webb C, Zong RT, Lin D, Wang Z, Kaplan M,
Paulin Y, Smith E, Probst L, Bryant J, Goldstein A, et al:
Differential regulation of immunoglobulin gene transcription via
nuclear matrix-associated regions. Cold Spring Harb Symp Quant
Biol. 64:109–118. 1999. View Article : Google Scholar
|
11
|
Kortschak RD, Tucker PW and Saint R: ARID
proteins come in from the desert. Trends Biochem Sci. 25:294–299.
2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim D and Tucker PW: A regulated
nucleocytoplasmic shuttle contributes to Bright's function as a
transcriptional activator of immunoglobulin genes. Mol Cell Biol.
26:2187–2201. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim D, Probst L, Das C and Tucker PW:
REKLES is an ARID3-restricted multifunctional domain. J Biol Chem.
282:15768–15777. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schmidt C, Kim D, Mathur S, Covarrubias D,
Das C, Brown MA, Storsberg J and Tucker H: The Arid3a transcription
factor rescues natural and RAS-V12-induced senescence via a
Rb-dependent pathway. Am J Immunol. 13:216–232. 2017. View Article : Google Scholar
|
15
|
Kobayashi K, Era T, Takebe A, Jakt LM and
Nishikawa S: ARID3B induces malignant transformation of mouse
embryonic fibroblasts and is strongly associated with malignant
neuroblastoma. Cancer Res. 66:8331–8336. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cowden Dahl KD, Dahl R, Kruichak JN and
Hudson LG: The epidermal growth factor receptor responsive miR-125a
represses mesenchymal morphology in ovarian cancer cells.
Neoplasia. 11:1208–1215. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Samyesudhas SJ, Roy L and Cowden Dahl KD:
Differential expression of ARID3B in normal adult tissue and
carcinomas. Gene. 543:174–180. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kobayashi K, Jakt LM and Nishikawa SI:
Epigenetic regulation of the neuroblastoma genes, Arid3b and Mycn.
Oncogene. 32:2640–2648. 2013. View Article : Google Scholar :
|
19
|
Wang J, Rao S, Chu J, Shen X, Levasseur
DN, Theunissen TW and Orkin SH: A protein interaction network for
pluripotency of embryonic stem cells. Nature. 444:364–368. 2006.
View Article : Google Scholar : PubMed/NCBI
Popowski M, Templeton TD, Lee BK, Rhee C,
Li H, Miner C, Dekker JD, Orlanski S, Bergman Y, et al:
Bright/Arid3A acts as a barrier to somatic cell reprogramming
through direct regulation of Oct4, Sox2, and Nanog. Stem Cell
Reports. 2:26–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liao TT, Hsu WH, Ho CH, Hwang WL, Lan HY,
Lo T, Chang CC, Tai SK and Yang MH: let-7 modulates chromatin
configuration and target gene repression through regulation of the
ARID3B complex. Cell Rep. 14:520–533. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Roy L, Samyesudhas SJ, Carrasco M, Li J,
Joseph S, Dahl R and Cowden Dahl KD: ARID3B increases ovarian tumor
burden and is associated with a cancer stem cell gene signature.
Oncotarget. 5:8355–8366. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bobbs A, Gellerman K, Hallas WM, Joseph S,
Yang C, Kurkewich J and Cowden Dahl KD: ARID3B directly regulates
ovarian cancer promoting genes. PLoS One. 10:e01319612015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Chien CS, Wang ML, Chu PY, Chang YL, Liu
WH, Yu CC, Lan YT, Huang PI, Lee YY, Chen YW, et al: Lin28B/Let-7
regulates expression of Oct4 and Sox2 and reprograms oral squamous
cell carcinoma cells to a stem-like state. Cancer Res.
75:2553–2565. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Roy L, Bobbs A, Sattler R, Kurkewich JL,
Dausinas PB, Nallathamby P and Cowden Dahl KD: CD133 promotes
adhesion to the ovarian cancer metastatic niche. Cancer Growth
Metastasis. 11:11790644187678822018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dausinas P, Pulakanti K, Rao S, Cole JM,
Dahl R and Cowden Dahl KD: ARID3A and ARID3B induce stem promoting
pathways in ovarian cancer cells. Gene. 738:1444582020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lestari W, Ichwan SJ, Otsu M, Yamada S,
Iseki S, Shimizu S and Ikeda MA: Cooperation between ARID3A and p53
in the transcriptional activation of p21WAF1 in response to DNA
damage. Biochem Biophys Res Commun. 417:710–716. 2012. View Article : Google Scholar
|
27
|
Pratama E, Tian X, Lestari W, Iseki S,
Ichwan SJ and Ikeda MA: Critical role of ARID3B in the expression
of pro-apoptotic p53-target genes and apoptosis. Biochem Biophys
Res Commun. 468:248–254. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma K, Araki K, Ichwan SJ, Suganuma T,
Tamamori-Adachi M and Ikeda MA: E2FBP1/DRIL1, an AT-rich
interaction domain-family transcription factor, is regulated by
p53. Mol Cancer Res. 1:438–444. 2003.PubMed/NCBI
|
29
|
Schwarz JK, Bassing CH, Kovesdi I, Datto
MB, Blazing M, George S, Wang XF and Nevins JR: Expression of the
E2F1 transcription factor overcomes type beta transforming growth
factor-mediated growth suppression. Proc Natl Acad Sci USA.
92:483–487. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Ikeda MA, Jakoi L and Nevins JR: A unique
role for the Rb protein in controlling E2F accumulation during cell
growth and differentiation. Proc Natl Acad Sci USA. 93:3215–3220.
1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ichwan SJ, Yamada S, Sumrejkanchanakij P,
Ibrahim-Auerkari E, Eto K and Ikeda MA: Defect in serine 46
phosphorylation of p53 contributes to acquisition of p53 resistance
in oral squamous cell carcinoma cells. Oncogene. 25:1216–1224.
2006. View Article : Google Scholar
|
33
|
Freedman JA, Chang JT, Jakoi L and Nevins
JR: A combinatorial mechanism for determining the specificity of
E2F activation and repression. Oncogene. 28:2873–2881. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhu W, Giangrande PH and Nevins JR: hu W,
Giangrande PH and Nevins JR: E2Fs link the control of G1/S and G2/M
transcription. EMBO J. 23:4615–4626. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ohtani K, DeGregori J and Nevins JR:
Regulation of the cyclin E gene by transcription factor E2F1. Proc
Natl Acad Sci USA. 92:12146–12150. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Smith EJ, Leone G and Nevins JR: Distinct
mechanisms control the accumulation of the Rb-related p107 and p130
proteins during cell growth. Cell Growth Differ. 9:297–303.
1998.PubMed/NCBI
|
37
|
Takahashi Y, Rayman JB and Dynlacht BD:
Analysis of promoter binding by the E2F and pRB families in vivo:
Distinct E2F proteins mediate activation and repression. Genes Dev.
14:804–816. 2000.PubMed/NCBI
|
38
|
Kaplan MH, Zong RT, Herrscher RF,
Scheuermann RH and Tucker PW: Transcriptional activation by a
matrix associating region-binding protein. contextual requirements
for the function of bright. J Biol Chem. 276:21325–21330. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Fukuyo Y, Takahashi A, Hara E, Horikoshi
N, Pandita TK and Nakajima T: E2FBP1 antagonizes the p16(INK4A)-Rb
tumor suppressor machinery for growth suppression and cellular
senescence by regulating promyelocytic leukemia protein stability.
Int J Oral Sci. 3:200–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Araki K, Nakajima Y, Eto K and Ikeda MA:
Distinct recruitment of E2F family members to specific E2F-binding
sites mediates activation and repression of the E2F1 promoter.
Oncogene. 22:7632–7641. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Schlisio S, Halperin T, Vidal M and Nevins
JR: Interaction of YY1 with E2Fs, mediated by RYBP, provides a
mechanism for specificity of E2F function. EMBO J. 21:5775–5786.
2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rhee C, Lee BK, Beck S, Anjum A, Cook KR,
Popowski M, Tucker HO and Kim J: Arid3a is essential to execution
of the first cell fate decision via direct embryonic and
extraembryonic transcriptional regulation. Genes Dev. 28:2219–2232.
2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Joseph S, Deneke VE and Cowden Dahl KD:
ARID3B induces tumor necrosis factor alpha mediated apoptosis while
a novel ARID3B splice form does not induce cell death. PLoS One.
7:e421592012. View Article : Google Scholar : PubMed/NCBI
|