Association of the microbiome with colorectal cancer development (Review)
- Authors:
- Maha-Hamadien Abdulla
- Disha Agarwal
- Jaikee Kumar Singh
- Thamer Bin Traiki
- Manoj Kumar Pandey
- Rehan Ahmad
- Sandeep Kumar Srivastava
-
Affiliations: Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India, Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA - Published online on: March 3, 2021 https://doi.org/10.3892/ijo.2021.5197
- Article Number: 17
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dahmus JD, Kotler DL, Kastenberg DM and Kistler CA: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER and Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444:1027–1031. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, et al: Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 149:1578–1593. 2012. View Article : Google Scholar : PubMed/NCBI | |
John GK and Mullin GE: The gut microbiome and obesity. Corr Oncol Rep. 18:452016. View Article : Google Scholar | |
Dabke K, Hendrick G and Devkota S: The gut microbiome and metabolic syndrome. J Clin Invest. 129:4050–4057. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Liu M, Cao J, Li X, Fan D, Xia Y, Lu X, Li J, Ju D and Zhao H: The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res. 2019:75460472019. View Article : Google Scholar : PubMed/NCBI | |
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al: Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S and Letellier E: Microbiome in colorectal cancer: How to get from Meta-omics to Mechanism. Trends Microbiol. 28:401–423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schwabe RF and Jobin C: The microbiome and cancer. Nat Rev Cancer. 13:800–812. 2013. View Article : Google Scholar : PubMed/NCBI | |
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI and Knight R: Bacterial community variation in human body habitats across space and time. Science. 326:1694–1697. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al: Linking long-term dietary patterns with gut microbial enterotypes. Science. 334:105–108. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhat MI and Kapila R: Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutr Rev. 75:374–389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wong SH, Kwong TNY, Chow TC, Luk AKC, Dai RZW, Nakatsu G, Lam TYT, Zhang L, Wu JCY, Chan FKL, et al: Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 66:1441–1448. 2017. View Article : Google Scholar : | |
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68:654–662. 2019. View Article : Google Scholar : | |
Ley RE, Peterson DA and Gordon JI: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 124:837–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, et al: Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 93:97–108. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S and Zhao L: Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6:320–329. 2012. View Article : Google Scholar : | |
Zackular JP, Rogers MA, Ruffin MT IV and Schloss PD: The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila). 7:1112–1121. 2014. View Article : Google Scholar | |
Yu YN and Fang JY: Gut microbiota and colorectal cancer. Gastrointest Tumors. 2:26–32. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wong SH and Yu J: Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 16:690–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 6:e163932011. View Article : Google Scholar : PubMed/NCBI | |
Sears CL: Enterotoxigenic bacteroides fragilis: A rogue among symbiotes. Clin Micobiol Rev. 22:349–369. 2009. View Article : Google Scholar | |
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB and Yang L: Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 105:1907–1911. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, Chen Y, Yang F, Lu N, Wang Z, et al: Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 66:462–470. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Déchelotte P, Bonnet R, Pezet D and Darfeuille-Michaud A: Colonization of the human gut by E coli and colorectal cancer risk. Clin Cancer Res. 20:859–867. 2014. View Article : Google Scholar | |
Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D and Bonnet R: High prevalence of mucosa-associated E coli producing cyclomudulin and genotoxin in colon cancer. PLoS One. 8:e569642013. View Article : Google Scholar | |
Zhang H, Chang Y, Zheng Q, Zhang R, Hu C and Jia W: Altered intestinal microbiota associated with colorectal cancer. Front Med. 13:461–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marchesi JR, Dutilh BE, Hall N, Peters WHM, Roelofs R, Boleji A and Tjalsma H: Towards the human colorectal cancer microbiome. PLoS One. 6:e204472011. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Fang L and Lee MH: Dysbiosis of Gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf). 6:1–12. 2018. View Article : Google Scholar | |
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G and Han YW: Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 14:195–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al: Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 42:344–355. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abed J, Emgard JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al: Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 20:215–225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma CT, Luo HS, Gao F, Tang QC and Chen W: Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett. 16:2606–2612. 2018.PubMed/NCBI | |
Kourtidis A, Lu R, Pence LJ and Anastasiadis PZ: A central role for cadherin signaling in cancer. Exp Cell Res. 358:78–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim WK, Kwon Y, Jang M, Park M, Kim J, Cho S, Jang DG, Lee WB, Jung SH, Choi HJ, et al: β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancer. Sci Re. 9:184402019. | |
Yu MR, Kim HJ and Park HRF: Fusobacterium nucleatum accelerates the progression of colitis-associated colorectal cancer by promoting EMT. Cancers (Basel). 12:27282020. View Article : Google Scholar | |
Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N and Yu Y: FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 39:2022020. View Article : Google Scholar : PubMed/NCBI | |
Okita Y, Koi M, Takeda K, Ross R, Mukherjee B, Koeppe E, Stoffel EM, Galanko JA, McCoy AN, Keku TO, et al: Fusobacterium nucleatum infection correlates with two types of microsatellite alterations in colorectal cancer and triggers DNA damage. Gut Pathol. 12:462020. View Article : Google Scholar | |
Sayed IM, Chakraborty A, Abd El-Hafeez AA, Sharma A, Sahan AZ, Huang WJM, Sahoo D, Ghosh P, Hazra TK and Das S: The DNA Glycosylase NEIL2 suppresses Fusobacterium-infection-induced inflammation and DNA damage in colonic epithelial cells. Cells. 9:19802020. View Article : Google Scholar : | |
Guo S, Chen J, Chen F, Zeng Q, Liu WL and Zhang G: Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. Nov 10–2020.Epub ahead of print. View Article : Google Scholar | |
Lin R, Han C, Ding Z, Shi H, He R, Liu J, Qian W, Zhang Q, Fu X, Deng X, et al: Knock down of BMSC-derived Wnt3a or its antagonist analogs attenuate colorectal carcinogenesis induced by chronic Fusobacterium nucleatum infection. Cancer Lett. 495:165–179. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Yu C, Yue C and Liu X and Liu X: Fusobacterium nucleatum produces cancer stem cell characteristics via EMT-resembling variations. Int J Clin Exp Pathol. 13:1819–1828. 2020.PubMed/NCBI | |
Wu S, Rhee KJ, Zhang M, Franco A and Sears CL: Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase dependent E-cadherin cleavage. J Cell Sci. 120:1944–1952. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Liu Z, Niu B, Zhang J, Lee SR, Zhao Y, Harris DC and Zheng G: E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011:5673052011. View Article : Google Scholar | |
Sears CL, Geis AL and Housseau F: Bacteroides fragilis subverts mucosal biology: From symbiont to colon carcinogenesis. J Clin Invest. 124:4166–4172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nistal E, Fernández-Fernández N, Vivas S and Olcoz JL: Factors determining colorectal cancer: The role of the intestinal microbiota. Front Oncol. 5:2202015. View Article : Google Scholar : PubMed/NCBI | |
Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA and Feizabadi MM: Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Frontier Cell Infect Microbiol. 9:4492020. View Article : Google Scholar | |
Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang YQ, Sun DF, Gao QY, Chen YX and Fang JY: Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes. 12:17889002020. View Article : Google Scholar : | |
Hwang S, Lee CG, Jo M, Park CO, Gwon SY, Hwang S, Yi HC, Lee SY, Eom YB, Karim B and Rhee KJ: Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int J Med Sci. 17:145–152. 2020. View Article : Google Scholar : | |
Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen Z, Sun D, Zhong M, Chen H, Hong J, et al: Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 10:6752019. View Article : Google Scholar : PubMed/NCBI | |
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al: Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338:120–123. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tjalsma H, Boleij A, Marchesi JR and Dutilh BE: A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects. Nat Rev Microbiol. 10:575–582. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J and Lochs H: Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 115:281–286. 1998. View Article : Google Scholar : PubMed/NCBI | |
Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF and Rhodes JM: Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology. 127:80–93. 2004. View Article : Google Scholar : PubMed/NCBI | |
Darfeuille-Michaud A, Neut C, Barnich N, Lederman E and Di Martino P: Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology. 115:1405–1413. 1998. View Article : Google Scholar : PubMed/NCBI | |
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L and Colombel JF: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 127:412–421. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lax AJ: Opinion: Bacterial toxins and cancer-a case to answer? Nat Rev Microbiol. 3:343–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Thelestam M and Frisan T: Cytolethal distending toxins. Rev Physiol Biochem Pharmacol. 152:111–133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Falzano L, Filippini P, Travaglione S, Miraglia AG, Fabbri A and Fiorentini C: Escherichia coli cytotoxic necrotizing factor 1 blocks cell cycle G2/M transition in uroepithelial cells. Infect Immun. 74:3765–3772. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malorni W and Fiorentini C: Is the Rac GTPase-activating toxin CNF1 a smart hijacker of host cell fate? FASEB J. 20:606–609. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jubelin G, Chavez CV, Taieb F, Banfield MJ, Samba-Louaka A, Nobe R, Nougayrède JP, Zumbihl R, Givaudan A, Escoubas JM and Oswald E: Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens. PLoS One. 4:e48552009. View Article : Google Scholar : PubMed/NCBI | |
Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U and Oswald E: Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 313:848–851. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cuevas-Ramosa G, Petita CR, Marcqa I, Bourya M, Oswalda E and Nougayrède JP: Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 107:11357–11542. 2010. | |
Kwong TNY, Wang X, Nakatsu G, Chow TC, Tipoe T, Dai RZW, Tsoi KKK, Wong MCS, Tse G, Chan MTV, et al: Association between bactereia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology. 155:383–390.e8. 2018. View Article : Google Scholar | |
Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC, Chan AWH, Chan FKL, Sung JJY and Yu J: Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology. 152:1419–1433.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Purcell RV, Visnovska M, Biggs PJ, Schmeier S and Frizelle FA: Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep. 7:115902017. View Article : Google Scholar : PubMed/NCBI | |
Long X, Wong CC, Tong L, Chu ESH, Ho Szeto C, Go MYY, Coker OO, Chan AWH, Chan FKL, Sung JJY and Yu J: Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 4:2319–2330. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Herold JL, Schady D, Davis J, Kopetz S, Martinez-Moczygemba M, Murray BE, Han F, Li Y, Callaway E, et al: Streptococcus gallolyticus Subsp gallolyticus promotes colorectal tumor development. PLoS Pathog. 13:e10064402017. View Article : Google Scholar | |
Aymeric L, Donnadieu F, Mulet C, du Merle L, Nigro G, Saffarian A, Bérard M, Poyart C, Robine S, Regnault B, et al: Colorect a l ca ncer sp eci f ic cond itions promote Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci USA. 115:E283–E291. 2018. View Article : Google Scholar | |
Konstantinov SR, Kuipers EJ and Peppelenbosch MP: Functional genomic analysis of Gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol. 10:741–745. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, Bamba D, Zhang X, Shang X, Luo F and Xin Y: Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother. 83:536–541. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S and Redinbo MR: Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 330:831–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marchesan J, Jiao YZ, Schaff RA, Hao J, Morelli T, Kinney JS, Gerow E, Sheridan R, Rodrigues V, Paster BJ, et al: TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens. Mol Oral Microbiol. 31:243–258. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Yang M, Wang D, Zhang S, Yan S, Zhu Y and Chen W: Alteration of the abundance of Parvimonas micra in the gut along the adenoma-carcinoma sequence. Oncol Lett. 20:1062020. View Article : Google Scholar : | |
Allali I, Boukhatem N, Bouguenouch L, Hardi H, Boudouaya HA, Cadenas MB, Ouldim K, Amzazi S, Azcarate-Peril MA and Ghazal H: Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol (Berl). 207:211–225. 2018. View Article : Google Scholar | |
Yang Y, Cai Q, Shu XO, Steinwandel MD, Blot WJ, Zheng W and Long J: Prospective study of oral microbiome and colorectal cancer risk in low-income and African American populations. Int J Cancer. 144:2381–2389. 2019. View Article : Google Scholar : | |
Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, Chan FKL, Kristiansen K, Sung JJY, Wong SH and Yu J: Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 6:702018. View Article : Google Scholar : PubMed/NCBI | |
Sobrinho AR: Cytokine production in response to endodontic infection in germ-free mice. Oral Microbiol Immunol. 17:344–353. 2002. View Article : Google Scholar | |
Lomholt JA and Kilian M: Immunoglobulin A1 protease activity in Gemella haemolysans. J Clin Microbiol. 38:2760–2762. 2000. View Article : Google Scholar : PubMed/NCBI | |
Montalban-Arques A and Scharl M: Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine. 48:648–655. 2019. View Article : Google Scholar : PubMed/NCBI | |
Allen J and Sears CL: Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: Contributions to colorectal cancer development. Genome Med. 11:112019. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Wu WKK, Wong SH, Liu D, Kwong TNY, Nakatsu G, Yan PS, Chuang YM, Chan MW, Coker OO, et al: Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. Microbiome. 8:1082020. View Article : Google Scholar : PubMed/NCBI | |
Sobhani I, Rotkopf H and Khazaie K: Bacteria-related changes in host DNA methylation and risk for CRC. Gut Microbes. 12:e18008982020. View Article : Google Scholar | |
Gagnière J, Bonnin V, Jarrousse AS, Cardamone E, Agus A, Uhrhammer N, Sauvanet P, Déchelotte P, Barnich N, Bonnet R, et al: Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin Sci (Lond). 131:471–485. 2017. View Article : Google Scholar | |
Foran E, Garrity-Park MM, Mureau C, Newell J, Smyrk TC, Limburg PJ and Egan LJ: Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res. 8:471–481. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C and van der Woude CJ: IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis. 3:1889–1896. 2012. View Article : Google Scholar | |
Hartnett L and Egan LJ: Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis. 33:723–731. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N and Neghadari B: Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J Cell Physiol. 234:2337–2344. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, et al: Altered fecal small RNA profiles in colorectal cancer reflected gut microbiome composition in stool samples. mSystems. 4:200289–19. 2019. View Article : Google Scholar | |
Yuan C, Steer CJ and Subramanian S: Host-microRNA-Microbiota interaction in colorectal cancer. Genes (Basel). 10:2702019. View Article : Google Scholar | |
Kang M and Martin A: Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Semin Immunol. 13:3–13. 2017. View Article : Google Scholar | |
Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rosenfeld N, et al: Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 23:634–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lasry A, Zinger A and Ben-Neriah Y: Inflammatory networks underlying colorectal cancer. Nat Immunol. 17:230–240. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ruskov H, Burcharth J and Pommergaard HC: Linking gut microbiota to colorectal cancer. J Cancer. 8:3378–3395. 2017. View Article : Google Scholar | |
Grivennikov SI: Inflammation and colorectal cancer: Colitisassociated neoplasia. Semin Immunopathol. 35:229–244. 2013. View Article : Google Scholar | |
Coussens LM and Pollard JW: Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol. 3:a0032852011. View Article : Google Scholar | |
Chen T, Li Q, Wu J, Wu Y, Peng W, Li H, Wang J, Tang X, Peng Y and Fu X: Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother. 67:1635–1646. 2018. View Article : Google Scholar : PubMed/NCBI | |
Drewes JL, Housseau F and Sears CL: Sporadic colorectal cancer: Microbial contributors to disease prevention, development and therapy. Br J Cancer. 115:273–280. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, et al: Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 111:18321–18326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, Boucher D and Bonnet M: Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 24:2327–2347. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar : | |
Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. 2017. View Article : Google Scholar | |
Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, Li J, Zhang D and Zhou Y: Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget. 7:46158–46170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Ziao N, Zhu R, Zhang Y, Wu D, Wang AJ, Fang S, Tao L, Li Y, Cheng S, et al: Identification of microbial markers across populations in early detection of colorectal cancer. bioRixv. https://doi.org/10.1101/2020.08.16.253344. | |
Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R and Weiner HL: The host shapes the gut Microbiota via fecal MicroRNA. Cell Host Microbe. 19:32–43. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Burns MB, Subramanian S and Blekhman R: Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems. 3:e00205–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sarshar M, Scribano D, Ambrosi C, Palamara AT and Masotti A: Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in Host-Microbiome interactions. Cancers (Basel). 12:21742020. View Article : Google Scholar | |
Yang T, Owen JL, Lightfoot YL, Kladde MP and Mohamadzadeh M: Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med. 19:714–725. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li M, Chen WD and Wang YD: The roles of the gut microbiotamiRNA interaction in the host pathophysiology. Mol Med. 26:1012020. View Article : Google Scholar | |
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Serna G, Ruiz-Pace F, Hernando J, Alonso L, Fasani R, Landolfi S, Comas R, Jimenez J, Elez E, Bullman S, et al: Fusobacterium nucleatum persistance and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann Oncol. 31:1366–1375. 2020. View Article : Google Scholar : PubMed/NCBI | |
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI | |
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al: The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 342:971–976. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu X and Zhang X: Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol Res. 171:97–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley JM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor activity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uribe-Herranz M, Bittinger K, Rafail S, Guedan S, Pierini S, Tanes C, Ganetsky A, Morgan MA, Gill S, Tanyi JL, et al: Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight. 3:e949522018. View Article : Google Scholar | |
Hold GL: Gastrointestinal microbiota and colon cancer. Dig Dis. 34:244–250. 2016. View Article : Google Scholar : PubMed/NCBI |