1
|
Estey EH: Acute myeloid leukemia: 2014
update on risk-stratification and management. Am J Hematol.
89:1063–1081. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Saultz JN and Garzon R: Acute myeloid
leukemia: A concise review. J Clin Med. 5:332016. View Article : Google Scholar :
|
3
|
De Kouchkovsky I and Abdul-Hay M: Acute
myeloid leukemia: A comprehensive review and 2016 update. Blood
Cancer J. 6:e4412016. View Article : Google Scholar
|
4
|
Burnett AK: Treatment of acute myeloid
leukemia: Are we making progress? Hematology Am Soc Hematol Educ
Program. 2012:1–6. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sakamoto KM, Grant S, Saleiro D, Crispino
JD, Hijiya N, Giles F, Platanias L and Eklund EA: Targeting novel
signaling pathways for resistant acute myeloid leukemia. Mol Genet
Metab. 114:397–402. 2015. View Article : Google Scholar :
|
6
|
Feliciano SV, Santos MO, Pombo-de-Oliveira
MS, de Aquino JA, de Aquino TA, Arregi MM, Antoniazzif BN, da Costa
AM, Formigosa LA, Laporte CA, et al: Incidence and mortality of
myeloid malignancies in children, adolescents and Young adults in
Brazil: A population-based study. Cancer Epidemiol. 62:1015832019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Schlenk RF and Döhner H: Genomic
applications in the clinic: Use in treatment paradigm of acute
myeloid leukemia. Hematology Am Soc Hematol Educ Program.
2013:324–330. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yeung CC and Radich J: Predicting
chemotherapy resistance in AML. Curr Hematol Malig Rep. 12:530–536.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Coombs CC, Tallman MS and Levine RL:
Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol.
13:305–318. 2016. View Article : Google Scholar
|
10
|
Murphy T and Yee KW: Cytarabine and
daunorubicin for the treatment of acute myeloid leukemia. Expert
Opin Pharmacother. 18:1765–1780. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rustum YM and Preisler HD: Correlation
between leukemic cell retention of
1-beta-D-arabinofuranosylcytosine 5′-triphosphate and response to
therapy. Cancer Res. 39:42–49. 1979.PubMed/NCBI
|
12
|
Löwenberg B, Pabst T, Vellenga E, van
Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Biemond BJ,
Gratwohl A, et al: Cytarabine dose for acute myeloid leukemia. N
Engl J Med. 364:1027–1036. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rowe JM: AML in 2017: Advances in clinical
practice. Best Pract Res Clin Haematol. 30:283–286. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kayser S and Levis MJ: Advances in
targeted therapy for acute myeloid leukaemia. Br J Haematol.
180:484–500. 2018. View Article : Google Scholar :
|
15
|
Negoro E, Yamauchi T, Urasaki Y, Nishi R,
Hori H and Ueda T: Characterization of cytarabine-resistant
leukemic cell lines established from five different blood cell
lineages using gene expression and proteomic analyses. Int J Oncol.
38:911–919. 2011.PubMed/NCBI
|
16
|
Tamm I, Richter S, Oltersdorf D, Creutzig
U, Harbott J, Scholz F, Karawajew L, Ludwig WD and Wuchter C: High
expression levels of x-linked inhibitor of apoptosis protein and
survivin correlate with poor overall survival in childhood de novo
acute myeloid leukemia. Clin Cancer Res. 10:3737–3744. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chromik J, Safferthal C, Serve H and Fulda
S: Smac mimetic primes apoptosis-resistant acute myeloid leukaemia
cells for cytarabine-induced cell death by triggering necroptosis.
Cancer Lett. 344:101–109. 2014. View Article : Google Scholar
|
18
|
Kulsoom B, Shamsi TS, Afsar NA, Memon Z,
Ahmed N and Hasnain SN: Bax, Bcl-2, and Bax/Bcl-2 as prognostic
markers in acute myeloid leukemia: Are we ready for Bcl-2-directed
therapy? Cancer Manag Res. 10:403–416. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shang J, Chen WM, Wang ZH, Wei TN and Chen
ZZ: Wu WB. CircPAN3 mediates drug resistance in acute myeloid
leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol.
70:42–54.e3. 2019. View Article : Google Scholar
|
20
|
Kaltschmidt B, Greiner JFW, Kadhim HM and
Kaltschmidt C: Subunit-specific role of NF-κB in cancer.
Biomedicines. 6:442018. View Article : Google Scholar
|
21
|
Colombo F, Zambrano S and Agresti A:
NF-kappaB, the importance of being dynamic: Role and insights in
cancer. Biomedicines. 6:452018. View Article : Google Scholar
|
22
|
Guzman ML, Neering SJ, Upchurch D, Grimes
B, Howard DS, Rizzieri DA, Luger SM and Jordan CT: Nuclear
factor-kappaB is constitutively activated in primitive human acute
myelogenous leukemia cells. Blood. 98:2301–2307. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu
F, Zhao W, Wang Y, Wu X, Da W, et al: c-Myc plays part in drug
resistance mediated by bone marrow stromal cells in acute myeloid
leukemia. Leuk Res. 39:92–99. 2015. View Article : Google Scholar
|
24
|
Mughal MK, Akhter A, Street L, Pournazari
P, Shabani-Rad MT and Mansoor A: Acute myeloid leukaemia:
Expression of MYC protein and its association with cytogenetic risk
profile and overall survival. Hematol Oncol. 35:350–356. 2017.
View Article : Google Scholar
|
25
|
de Souza Reis FR, de Faria FC, Castro CP,
de Souza PS, da Cunha Vasconcelos F, Bello RD, da Silva AJ, Costa
PR and Maia RC: The therapeutical potential of a novel
pterocarpanquinone LQB-118 to target inhibitor of apoptosis
proteins in acute myeloid leukemia cells. Anticancer Agents Med
Chem. 13:341–351. 2013. View Article : Google Scholar
|
26
|
Nestal De Moraes G, Pereira Castro C,
Salustiano EJ, Dumas ML, Costas F, Wing-Fai Lam E, Ribeiro Costa PR
and Maia RC: [Corrigendum] The pterocarpanquinone LQB-118 induces
apoptosis in acute myeloid leukemia cells of distinct molecular
subtypes and targets FoxO3a and FoxM1 transcription factors. Int J
Oncol. 55:13962019.
|
27
|
Maia RC, Vasconcelos FC, de Sá Bacelar T,
Salustiano EJ, da Silva LF, Pereira DL, Moellman-Coelho A, Netto
CD, da Silva AJ, Rumjanek VM and Costa PR: LQB-118, a
pterocarpanquinone structurally related to lapachol
[2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: A novel
class of agent with high apoptotic effect in chronic myeloid
leukemia cells. Invest New Drugs. 29:1143–1155. 2011. View Article : Google Scholar
|
28
|
de Sa Bacelar T, da Silva AJ, Costa PR and
Rumjanek VM: The pterocarpanquinone LQB 118 induces apoptosis in
tumor cells through the intrinsic pathway and the endoplasmic
reticulum stress pathway. Anticancer Drugs. 24:73–83. 2013.
View Article : Google Scholar
|
29
|
Netto CD, da Silva AJ, Salustiano EJ,
Bacelar TS, Rica IG, Cavalcante MC, Rumjanek VM and Costa PR: New
pterocarpanquinones: Synthesis, antineoplasic activity on cultured
human malignant cell lines and TNF-alpha modulation in human PBMC
cells. Bioorg Med Chem. 18:1610–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
McGowan-Jordan J, Simons A and Schmid M:
ISCN 2016. An International System for Human Cytogenomic
Nomenclature (2016). Karger AG; Basel: 2016
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
32
|
Faustino-Rocha A, Oliveira PA,
Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG,
Colaco B, Pires MJ, Colaco J, Ferreira R and Ginja M: Estimation of
rat mammary tumor volume using caliper and ultrasonography
measurements. Lab Anim (NY). 42:217–224. 2013. View Article : Google Scholar
|
33
|
Tomayko MM and Reynolds CP: Determination
of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother
Pharmacol. 24:148–154. 1989. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song
J, Sun S, Ma T and Li W: [Corrigendum] cMyc regulates the
CDK1/cyclin B1 dependentG2/M cell cycle progression by histone H4
acetylation in Raji cells. Int J Mol Med. 44:19882019.
|
35
|
Zuber J, Radtke I, Pardee TS, Zhao Z,
Rappaport AR, Luo W, McCurrach ME, Yang MM, Dolan ME, Kogan SC, et
al: Mouse models of human AML accurately predict chemotherapy
response. Genes Dev. 23:877–889. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liersch R, Muller-Tidow C, Berdel WE and
Krug U: Prognostic factors for acute myeloid leukaemia in
adults-biological significance and clinical use. Br J Haematol.
165:17–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lynch RC and Medeiros BC: Chemotherapy
options for previously untreated acute myeloid leukemia. Expert
Opini Pharmacother. 16:2149–2162. 2015. View Article : Google Scholar
|
38
|
Carroll PA, Freie BW, Mathsyaraja H and
Eisenman RN: The MYC transcription factor network: Balancing
metabolism, proliferation and oncogenesis. Front Med. 12:412–425.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Park S, Chapuis N, Tamburini J, Bardet V,
Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and
Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in
acute myeloid leukemia. Haematologica. 95:819–828. 2010. View Article : Google Scholar :
|
40
|
Martino T, Magalhaes FC, Justo GA, Coelho
MG, Netto CD, Costa PR and Sabino KC: The pterocarpanquinone
LQB-118 inhibits tumor cell proliferation by downregulation of
c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle
inhibitor expression. Bioorg Med Chem. 22:3115–3122. 2014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
de Faria FC, Leal ME, Bernardo PS, Costa
PR and Maia RC: NFκB pathway and microRNA-9 and -21 are involved in
sensitivity to the pterocarpanquinone LQB-118 in different CML cell
lines. Anticancer Agents Med Chem. 15:345–352. 2015. View Article : Google Scholar
|
42
|
Martino T, Kudrolli TA, Kumar B, Salviano
I, Mencalha A, Coelho MG, Justo G, Costa PR, Sabino KC and Lupold
SE: The orally active pterocarpanquinone LQB-118 exhibits
cytotoxicity in prostate cancer cell and tumor models through
cellular redox stress. Prostate. 78:140–151. 2018. View Article : Google Scholar
|
43
|
Bernardo PS, Guimaraes GH, De Faria FC,
Longo G, Lopes GP, Netto CD, Costa PR and Maia RC: LQB118 compound
inhibits migration and induces cell death in glioblastoma cells.
Oncol Rep. 43:346–357. 2020.
|
44
|
Veisani Y, Khazaei S and Delpisheh A:
5-year survival rates based on the type of leukemia in Iran, a
meta-analysis. Caspian J Intern Med. 9:316–324. 2018.PubMed/NCBI
|
45
|
Lagunas-Rangel FA, Chavez-Valencia V,
Gomez-Guijosa MA and Cortes-Penagos C: Acute myeloid
leukemia-genetic alterations and their clinical prognosis. Int J
Hematol Oncol Stem Cell Res. 11:328–339. 2017.
|
46
|
Hackl H, Astanina K and Wieser R:
Molecular and genetic alterations associated with therapy
resistance and relapse of acute myeloid leukemia. J Hematol Oncol.
10:512017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Walter RB, Othus M, Burnett AK, Lowenberg
B, Kantarjian HM, Ossenkoppele GJ, Hills RK, Ravandi F, Pabst T,
Evans A, et al: Resistance prediction in AML: Analysis of 4601
patients from MRC/NCRI, HOVON/SAKK, SWOG and MD anderson cancer
center. Leukemia. 29:312–320. 2015. View Article : Google Scholar
|
48
|
Gallagher R, Collins S, Trujillo J,
McCredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti
F and Gallo R: Characterization of the continuous, differentiating
myeloid cell line (HL-60) from a patient with acute promyelocytic
leukemia. Blood. 54:713–33. 1979. View Article : Google Scholar : PubMed/NCBI
|
49
|
Dalton WT Jr, Ahearn MJ, McCredie KB,
Freireich EJ, Stass SA and Trujillo JM: HL-60 cell line was derived
from a patient with FAB-M2 and not FAB-M3. Blood. 71:242–247. 1988.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Collins SJ: The HL-60 promyelocytic
leukemia cell line: Proliferation, differentiation, and cellular
oncogene expression. Blood. 70:1233–1244. 1987. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yamauchi T, Uzui K, Nishi R, Shigemi H and
Ueda T: Cytarabine-resistant leukemia cells are moderately
sensitive to clofarabine in vitro. Anticancer Res. 34:1657–1662.
2014.PubMed/NCBI
|
52
|
Prenkert M, Uggla B, Tidefelt U and Strid
H: CRIM1 is expressed at higher levels in drug-resistant than in
drug-sensitive myeloid leukemia HL60 cells. Anticancer Res.
30:4157–4161. 2010.PubMed/NCBI
|
53
|
Furth JJ and Cohen SS: Inhibition of
mammalian DNA polymerase by the 5′-triphosphate of
1-beta-d-arabinofuranosylcytosine and the 5′-triphosphate of
9-beta-d-arabinofuranoxyladenine. Cancer Res. 28:2061–2067.
1968.PubMed/NCBI
|
54
|
Kufe DW, Major PP, Egan EM and Beardsley
GP: Correlation of cytotoxicity with incorporation of ara-C into
DNA. J Biol Chem. 255:8997–8900. 1980. View Article : Google Scholar : PubMed/NCBI
|
55
|
Shepshelovich D, Edel Y, Goldvaser H,
Dujovny T, Wolach O and Raanani P: Pharmacodynamics of cytarabine
induced leucopenia: A retrospective cohort study. Br J Clin
Pharmacol. 79:685–691. 2015. View Article : Google Scholar :
|
56
|
Chen Y, Gan D, Huang Q, Luo X, Lin D and
Hu J: Emodin and its combination with cytarabine induce apoptosis
in resistant acute myeloid leukemia cells in vitro and in vivo.
Cell Physiol Biochem. 48:2061–2073. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Slovak ML, Kopecky KJ, Cassileth PA,
Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR,
Rowe JM, et al: Karyotypic analysis predicts outcome of
preremission and postremission therapy in adult acute myeloid
leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology
Group Study. Blood. 96:4075–4083. 2000. View Article : Google Scholar : PubMed/NCBI
|
58
|
Mrozek K: Cytogenetic, molecular genetic,
and clinical characteristics of acute myeloid leukemia with a
complex karyotype. Semin Oncol. 35:365–377. 2008. View Article : Google Scholar : PubMed/NCBI
|
59
|
Stölzel F, Mohr B, Kramer M, Oelschlagel
U, Bochtler T, Berdel WE, Kaufmann M, Baldus CD, Schafer-Eckart K,
Stuhlmann R, et al: Karyotype complexity and prognosis in acute
myeloid leukemia. Blood Cancer J. 6:e3862016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Dash A and Gilliland DG: Molecular
genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol.
14:49–64. 2001. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rubnitz JE, Gibson B and Smith FO: Acute
myeloid leukemia. Hematol Oncol Clin North Am. 24:35–63. 2010.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Grove CS and Vassiliou GS: Acute myeloid
leukaemia: A paradigm for the clonal evolution of cancer? Dis Model
Mech. 7:941–951. 2014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kern W, Haferlach T, Schnittger S, Ludwig
WD, Hiddemann W and Schoch C: Karyotype instability between
diagnosis and relapse in 117 patients with acute myeloid leukemia:
Implications for resistance against therapy. Leukemia.
16:2084–2091. 2002. View Article : Google Scholar : PubMed/NCBI
|
64
|
Cassier PA, Castets M, Belhabri A and Vey
N: Targeting apoptosis in acute myeloid leukaemia. Br J Cancer.
117:1089–1098. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Del Poeta G, Bruno A, Del Principe MI,
Venditti A, Maurillo L, Buccisano F, Stasi R, Neri B, Luciano F,
Siniscalchi A, et al: Deregulation of the mitochondrial apoptotic
machinery and development of molecular targeted drugs in acute
myeloid leukemia. Curr Cancer Drug Targets. 8:207–222. 2008.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Tamm I, Kornblau SM, Segall H, Krajewski
S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, et al:
Expression and prognostic significance of IAP-family genes in human
cancers and myeloid leukemias. Clin Cancer Res. 6:1796–1803.
2000.PubMed/NCBI
|
67
|
Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ,
Kim JY, Cho EJ, Yoo KH and Koo HH: Overexpression of X-linked
inhibitor of apoptosis protein (XIAP) is an independent unfavorable
prognostic factor in childhood de novo acute myeloid leukemia. J
Korean Med Sci. 24:605–613. 2009. View Article : Google Scholar : PubMed/NCBI
|
68
|
Ibrahim AM, Mansour IM, Wilson MM, Mokhtar
DA, Helal AM and Al Wakeel HM: Study of survivin and X-linked
inhibitor of apoptosis protein (XIAP) genes in acute myeloid
leukemia (AML). Lab Hematol. 18:1–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
69
|
Zhou J, Lu X, Tan TZ and Chng WJ: X-linked
inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia
cell response to TRAIL and chemotherapy through potentiated
induction of proapoptotic machinery. Mol Oncol. 12:33–47. 2018.
View Article : Google Scholar
|
70
|
Bosman MC, Schuringa JJ and Vellenga E:
Constitutive NF-κB activation in AML: Causes and treatment
strategies. Crit Rev Oncol Hematol. 98:35–44. 2016. View Article : Google Scholar
|
71
|
Rushworth SA, Zaitseva L, Murray MY, Shah
NM, Bowles KM and MacEwan DJ: The high Nrf2 expression in human
acute myeloid leukemia is driven by NF-κB and underlies its
chemo-resistance. Blood. 120:5188–5198. 2012. View Article : Google Scholar : PubMed/NCBI
|
72
|
Catz SD and Johnson JL: Transcriptional
regulation of bcl-2 by nuclear factor kappa B and its significance
in prostate cancer. Oncogene. 20:7342–7351. 2001. View Article : Google Scholar : PubMed/NCBI
|
73
|
Murray S, Briasoulis E, Linardou H,
Bafaloukos D and Papadimitriou C: Taxane resistance in breast
cancer: Mechanisms, predictive biomarkers and circumvention
strategies. Cancer Treat Rev. 38:890–903. 2012. View Article : Google Scholar : PubMed/NCBI
|
74
|
Alam M, Kashyap T, Pramanik KK, Singh AK,
Nagini S and Mishra R: The elevated activation of NFκB and AP-1 is
correlated with differential regulation of Bcl-2 and associated
with oral squamous cell carcinoma progression and resistance. Clin
Oral Investig. 21:2721–2731. 2017. View Article : Google Scholar : PubMed/NCBI
|
75
|
Xia Y, Shen S and Verma IM: NF-κB, an
active player in human cancers. Cancer Immunol Res. 2:823–830.
2014. View Article : Google Scholar : PubMed/NCBI
|
76
|
Godwin P, Baird AM, Heavey S, Barr MP,
O'Byrne KJ and Gately K: Targeting nuclear factor-kappa B to
overcome resistance to chemotherapy. Front Oncol. 3:1202013.
View Article : Google Scholar : PubMed/NCBI
|
77
|
Ohanian M, Rozovski U, Kanagal-Shamanna R,
Abruzzo LV, Loghavi S, Kadia T, Futreal A, Bhalla K, Zuo Z, Huh YO,
et al: MYC protein expression is an important prognostic factor in
acute myeloid leukemia. Leuk Lymphoma. 60:37–48. 2019. View Article : Google Scholar
|
78
|
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J,
Jin H, Xu D, Gao J and Huang C: NF-κB1 inhibits c-Myc protein
degradation through suppression of FBW7 expression. Oncotarget.
5:493–505. 2014. View Article : Google Scholar : PubMed/NCBI
|
79
|
Miura K, Takahashi H, Nakagawa M, Izu A,
Sugitani M, Kurita D, Sakagami M, Ohtake S, Uchino Y, Hojo A, et
al: Clinical significance of co-expression of MYC and BCL2 protein
in aggressive B-cell lymphomas treated with a second line
immunochemotherapy. Leuk Lymphoma. 57:1335–1341. 2016. View Article : Google Scholar
|
80
|
Kobune M, Takimoto R, Murase K, Iyama S,
Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y and Kato
J: Drug resistance is dramatically restored by hedgehog inhibitors
in CD34+ leukemic cells. Cancer Sci. 100:948–955. 2009.
View Article : Google Scholar : PubMed/NCBI
|
81
|
Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo
YC, Myszka D, Han J and Wu H: XIAP induces NF-kappaB activation via
the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell.
26:689–702. 2007. View Article : Google Scholar : PubMed/NCBI
|
82
|
Hofer-Warbinek R, Schmid JA, Stehlik C,
Binder BR, Lipp J and de Martin R: Activation of NF-kappa B by
XIAP, the X chromosome-linked inhibitor of apoptosis, in
endothelial cells involves TAK1. J Biol Chem. 275:22064–22068.
2000. View Article : Google Scholar : PubMed/NCBI
|