Traditional and emerging therapies for anaplastic large cell lymphoma (Review)
- Authors:
- Xue Sun
- Xiaosheng Fang
- Yahan Li
- Dongyue Lu
- Xin Wang
-
Affiliations: Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China - Published online on: June 14, 2021 https://doi.org/10.3892/ijo.2021.5232
- Article Number: 52
This article is mentioned in:
Abstract
Al-Hamadani M, Habermann TM, Cerhan JR, Macon WR, Maurer MJ and Go RS: Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal analysis of the National cancer data base from 1998 to 2011. Am J Hematol. 90:790–795. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alessandri AJ, Pritchard SL, Schultz KR and Massing BG: A population-based study of pediatric anaplastic large cell lymphoma. Cancer. 94:1830–1835. 2002. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow SH, Harris NL, Jaffe ES, Pileri SA, Stein H and Thiele J: WHO classification of tumours of hematopoietic and lymphoid tissues. 2. 4th edition. International Agency for Research on Cancer (IARC); Lyon: 2017 | |
Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL and Look AT: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 263:1281–1284. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Cools J, Marynen P, Cui X, Siebert R, Gesk S, Schlegelberger B, Peeters B, De Wolf-Peeters C, Wlodarska I and Morris SW: Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood. 95:2144–2149. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hernández L, Pinyol M, Hernández S, Beà S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, et al: TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 94:3265–3268. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lamant L, Dastugue N, Pulford K, Delsol G and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 93:3088–3095. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C, Delsol G, et al: Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest. 81:419–426. 2001. View Article : Google Scholar : PubMed/NCBI | |
Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, Rimsza L, Pileri SA, Chhanabhai M, Gascoyne RD, et al: ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the International peripheral t-cell lymphoma project. Blood. 111:5496–5504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Larose H, Burke GAA, Lowe EJ and Turner SD: From bench to bedside: The past, present and future of therapy for systemic paediatric ALCL, ALK. Br J Haematol. 185:1043–1054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmitz N, Trumper L, Ziepert M, Nickelsen M, Ho AD, Metzner B, Peter N, Loeffler M, Rosenwald A and Pfreundschuh M: Treatment and prognosis of mature T-cell and NK-cell lymphoma: An analysis of patients with T-cell lymphoma treated in studies of the German high-grade non-hodgkin lymphoma study group. Blood. 116:3418–3425. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sibon D, Nguyen DP, Schmitz N, Suzuki R, Feldman AL, Gressin R, Lamant L, Weisenburger DD, Rosenwald A, Nakamura S, et al: ALK-positive anaplastic large-cell lymphoma in adults: An individual patient data pooled analysis of 263 patients. Haematologica. 104:e562–e565. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abramson JS, Feldman T, Kroll-Desrosiers AR, Muffly LS, Winer E, Flowers CR, Lansigan F, Nabhan C, Nastoupil LJ, Nath R, et al: Peripheral T-cell lymphomas in a large US multicenter cohort: Prognostication in the modern era including impact of frontline therapy. Ann Oncol. 25:2211–2217. 2014. View Article : Google Scholar : PubMed/NCBI | |
Escalon MP, Liu NS, Yang Y, Hess M, Walker PL, Smith TL and Dang NH: Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: The M D Anderson cancer center experience. Cancer. 103:2091–2098. 2005. View Article : Google Scholar | |
Simon A, Peoch M, Casassus P, Deconinck E, Colombat P, Desablens B, Tournilhac O, Eghbali H, Foussard C, Jaubert J, et al: Upfront VIP-reinforced-ABVD (VIP-rABVD) is not superior to CHOP/21 in newly diagnosed peripheral T cell lymphoma. Results of the randomized phase III trial GOELAMS-LTP95. Br J Haematol. 151:159–166. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sibon D, Fournier M, Brière J, Lamant L, Haioun C, Coiffier B, Bologna S, Morel P, Gabarre J, Hermine O, et al: Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the groupe d'etude des lymphomes de l'adulte trials. J Clin Oncol. 30:3939–3946. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brugières L, Quartier P, Le Deley MC, Pacquement H, Perel Y, Bergeron C, Schmitt C, Landmann J, Patte C, Terrier-Lacombe MJ, et al: Relapses of childhood anaplastic large-cell lymphoma: Treatment results in a series of 41 children-a report from the French society of pediatric oncology. Ann Oncol. 11:53–58. 2000. View Article : Google Scholar | |
Corradini P, Tarella C, Zallio F, Dodero A, Zanni M, Valagussa P, Gianni AM, Rambaldi A, Barbui T and Cortelazzo S: Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia. 20:1533–1538. 2006. View Article : Google Scholar : PubMed/NCBI | |
d'Amore F, Relander T, Lauritzsen GF, Jantunen E, Hagberg H, Anderson H, Holte H, Österborg A, Merup M, Brown P, et al: Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 30:3093–3099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reimer P, Rudiger T, Geissinger E, Weissinger F, Nerl C, Schmitz N, Engert A, Einsele H, Müller-Hermelink HK and Wilhelm M: Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: Results of a prospective multicenter study. J Clin Oncol. 27:106–113. 2009. View Article : Google Scholar | |
Wilhelm M, Smetak M, Reimer P, Geissinger E, Ruediger T, Metzner B, Schmitz N, Engert A, Schaefer-Eckart K and Birkmann J: First-line therapy of peripheral T-cell lymphoma: Extension and long-term follow-up of a study investigating the role of autologous stem cell transplantation. Blood Cancer J. 6:e4522016. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez J, Conde E, Gutierrez A, Arranz R, León A, Marín J, Bendandi M, Albo C and Caballero MD: The results of consolidation with autologous stem-cell transplantation in patients with peripheral T-cell lymphoma (PTCL) in first complete remission: The Spanish lymphoma and autologous transplantation group experience. Ann Oncol. 18:652–657. 2007. View Article : Google Scholar : PubMed/NCBI | |
He XH, Li B, Zou SM, Dong M, Zhou SY, Yang JL, Xue LY, Yang S, Liu P, Qin Y, et al: Efficacy of peripheral blood stem cell transplantation versus conventional chemotherapy on anaplastic large-cell lymphoma: A retrospective study of 64 patients from a single center. Chin J Cancer. 31:532–540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mehta N, Maragulia JC, Moskowitz A, Hamlin PA, Lunning MA, Moskowitz CH, Zelenetz A, Matasar MJ, Sauter C, Goldberg J and Horwitz SM: A retrospective analysis of peripheral T-cell lymphoma treated with the intention to transplant in the first remission. Clin Lymphoma Myeloma Leuk. 13:664–670. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ellin F, Landstrom J, Jerkeman M and Relander T: Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: A study from the Swedish lymphoma registry. Blood. 124:1570–1577. 2014. View Article : Google Scholar : PubMed/NCBI | |
Horwitz SM, Ansell S, Ai WZ, Barnes J, Barta SK, Clemens MW, Dogan A, Goodman AM, Goyal G, Guitart J, et al: NCCN Guidelines Insights: T-Cell Lymphomas, Version 1.2021. J Natl Compr Canc Netw. 18:1460–1467. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kharfan-Dabaja MA, Kumar A, Ayala E, Hamadani M, Reimer P, Gisselbrecht C, d'Amore F, Jantunen E, Ishida T, Bazarbachi A, et al: Clinical practice recommendations on indication and timing of hematopoietic cell transplantation in Mature T cell and NK/T cell lymphomas: An International collaborative effort on behalf of the guidelines committee of the American society for blood and marrow transplantation. Biol Blood Marrow Transplant. 23:1826–1838. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park SI, Horwitz SM, Foss FM, Pinter-Brown LC, Carson KR, Rosen ST, Pro B, His ED, Federico M, Gisselbrecht C, et al: The role of autologous stem cell transplantation in patients with nodal peripheral T-cell lymphomas in first complete remission: Report from COMPLETE, a prospective, multicenter cohort study. Cancer. 125:1507–1517. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fossard G, Broussais F, Coelho I, Bailly S, Nicolas-Virelizier E, Toussaint E, Lancesseur C, Le Bras F, Willems E, Tchernonog E, et al: Role of up-front autologous stem-cell transplantation in peripheral T-cell lymphoma for patients in response after induction: An analysis of patients from LYSA centers. Ann Oncol. 29:715–723. 2018. View Article : Google Scholar | |
Domingo-Domenech E, Boumendil A, Climent F, Sengeloev H, Wahlin B, Wattad W, Arat M, Finel H, Schapp N, Ganser A, et al: Autologous hematopoietic stem cell transplantation for relapsed/refractory systemic anaplastic large cell lymphoma. A retrospective analysis of the lymphoma working party (LWP) of the EBMT. Bone Marrow Transplant. 55:796–803. 2020. View Article : Google Scholar | |
Domingo-Domenech E, Boumendil A, Climent F, Socié G, Kroschinsky F, Finel H, Vandenbergue E, Nemet D, Stelljes M, Bittenbring JT, et al: Allogeneic hematopoietic stem cell transplantation for patients with relapsed/refractory systemic anaplastic large cell lymphoma. A retrospective analysis of the lymphoma working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 55:633–640. 2020. View Article : Google Scholar | |
Fukano R, Mori T, Kobayashi R, Mitsui T, Fujita N, Iwasaki F, Suzumiya J, Chin M, Goto H, Takahashi Y, et al: Haematopoietic stem cell transplantation for relapsed or refractory anaplastic large cell lymphoma: A study of children and adolescents in Japan. Br J Haematol. 168:557–563. 2015. View Article : Google Scholar | |
Fukano R, Mori T, Fujita N, Kobayashi R, Mitsui T, Kato K, Suzuki R, Suzumiya J, Fukuda T, Shindo M, et al: Successful outcome with reduced-intensity condition regimen followed by allogeneic hematopoietic stem cell transplantation for relapsed or refractory anaplastic large-cell lymphoma. Int J Hematol. 110:723–728. 2019. View Article : Google Scholar : PubMed/NCBI | |
Smith SM, Burns LJ, van Besien K, Lerademacher J, He W, Fenske TS, Suzuki R, Hsu JW, Schouten HC, Hale GA, et al: Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol. 31:3100–3109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katz J, Janik JE and Younes A: Brentuximab Vedotin (SGN-35). Clin Cancer Res. 17:6428–6436. 2011. View Article : Google Scholar : PubMed/NCBI | |
Smith CA, Farrah T and Goodwin RG: The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell. 76:959–962. 1994. View Article : Google Scholar : PubMed/NCBI | |
Younes A and Kadin ME: Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J Clin Oncol. 21:3526–3534. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ansell SM: Brentuximab vedotin: Delivering an antimitotic drug to activated lymphoma cells. Expert Opin Investig Drugs. 20:99–105. 2011. View Article : Google Scholar | |
Shustov A and Soma L: Anaplastic large cell lymphoma: Contemporary concepts and optimal management. Cancer Treat Res. 176:127–144. 2019. View Article : Google Scholar : PubMed/NCBI | |
2011 Notifications. https://www.fda.gov/drugs/resources-information-approved-drugs/2011-notifications. Journal 2021. U.S Food and Drug Adminstration; 2018 | |
Broccoli A, Pellegrini C, Di Rocco A, Puccini B, Patti C, Gini G, Mannina D, Tani M, Rusconi C, Romano A, et al: Italian real-life experience with brentuximab vedotin: Results of a large observational study of 40 cases of relapsed/refractory systemic anaplastic large cell lymphoma. Haematologica. 102:1931–1935. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M, Connors JM, et al: Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 130:2709–2717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bartlett NL, Chen R, Fanale MA, Brice P, Gopal A, Smith SE, Advani R, Matous JV, Ramchandren R, Rosenblatt JD, et al: Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol. 7:242014. View Article : Google Scholar : PubMed/NCBI | |
Fukuhara N, Yamamoto G, Tsujimura H, Chou T, Shibayama H, Yanai T, Shibuya K and Izutsu K: Retreatment with brentuximab vedotin in patients with relapsed/refractory classical Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: A multicenter retrospective study. Leuk Lymphoma. 61:176–180. 2020. View Article : Google Scholar | |
Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, Chen RW, Davies A, Illidge T, Uttarwar M, et al: Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood. 131:2120–2124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Horwitz S, O'Connor OA, Pro B, Illidge T, Fanale M, Advani R, Bartlett NL, Christensen JH, Morschhauser F, Domingo-Domenech E, et al: Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 393:229–240. 2019. View Article : Google Scholar : | |
U.S. Food and Drug (FDA): FDA approves first-line treatment for peripheral T-cell lymphoma under new review pilot. FDA; Silver Spring, MD: 2018, https://www.fda.gov/news-events/press-announcements/fda-approves-first-line-treatment-peripheralt-cell-lymphoma-under-new-review-pilot. Accessed November 16, 2018. | |
Vu K and Ai W: Update on the treatment of anaplastic large cell lymphoma. Curr Hematol Malig Rep. 13:135–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Malik SM, Liu K, Qiang X, Sridhara R, Tang S, McGuinn WD Jr, Verbois SL, Marathe A, Williams GM, Bullock J, et al: Folotyn (pralatrexate injection) for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma: U.S. food and drug administration drug approval summary. Clin Cancer Res. 16:4921–4927. 2010. View Article : Google Scholar : PubMed/NCBI | |
O'Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, Lechowicz MJ, Savage KJ, Shustov AR, Gisselbrecht C, et al: Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: Results from the pivotal PROPEL study. J Clin Oncol. 29:1182–1189. 2011. View Article : Google Scholar : PubMed/NCBI | |
O'Connor OA, Marchi E, Volinn W, Shi J, Mehrling T and Kim WS: Strategy for assessing new drug value in orphan diseases: An international case match control analysis of the PROPEL study. JNCI Cancer Spectr. 2:pky0382018. View Article : Google Scholar | |
Advani RH, Ansell SM, Lechowicz MJ, Beaven AW, Loberiza F, Carson KR, Evens AM, Foss F, Horwitz S, Pro B, et al: A phase II study of cyclophosphamide, etoposide, vincristine and prednisone (CEOP) Alternating with Pralatrexate (P) as front line therapy for patients with peripheral T-cell lymphoma (PTCL): Final results from the T-cell consortium trial. Br J Haematol. 172:535–544. 2016. View Article : Google Scholar | |
Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Borchmann P, Morschhauser F, Wilhelm M, et al: Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 30:631–636. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S, et al: Belinostat in patients with relapsed or refractory peripheral T-Cell Lymphoma: Results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 33:2492–2499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, Yu L, Ke X, Huang H, Shen Z, et al: Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 26:1766–1771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, Zhao W, Zhang H, Sun X, Yang H, et al: Chidamide in relapsed or refractory peripheral T cell lymphoma: A multicenter real-world study in China. J Hematol Oncol. 10:692017. View Article : Google Scholar : PubMed/NCBI | |
Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M, Pinter-Brown L, et al: Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J Hematol Oncol. 7:112014. View Article : Google Scholar : PubMed/NCBI | |
Dupuis J, Morschhauser F, Ghesquières H, Tilly H, Casasnovas O, Thieblemont C, Ribrag V, Bossard C, Le Bras F, Bachy E, et al: Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: A non-randomised, phase 1b/2 study. Lancet Haematol. 2:e160–e165. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johnston PB, Cashen AF, Nikolinakos PG, Beaven AW, Barta SK, Bhat G, Hasal SJ, De Vos S, Oki Y, Deng C and Foss FM: Belinostat in combination with standard cyclophosphamide, doxorubicin, vincristine and prednisone as first-line treatment for patients with newly diagnosed peripheral T-cell lymphoma. Exp Hematol Oncol. 10:152021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Su L, Liu L, Gao Y, Wang Q, Su H, Song Y, Zhang H, Shen J, Jing H, et al: The combination of chidamide with the CHOEP regimen in previously untreated patients with peripheral T-cell lymphoma: A prospective, multicenter, single arm, phase 1b/2 study. Cancer Biol Med. Mar 23–2021.Epub ahead of print. View Article : Google Scholar | |
Jäger R, Hahne J, Jacob A, Egert A, Schenkel J, Wernert N, Schorle H and Wellmann A: Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res. 25:3191–3196. 2005.PubMed/NCBI | |
Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J, Simmons WJ, Dhall G, Howes J, Piva R and Inghirami G: NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 101:1919–1927. 2003. View Article : Google Scholar | |
Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY and Morris SW: Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood. 90:2901–2910. 1997. View Article : Google Scholar : PubMed/NCBI | |
Waqar SN and Morgensztern D: Lorlatinib: A new-generation drug for ALK-positive NSCLC. Lancet Oncol. 19:1555–1557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gambacorti Passerini C, Farina F, Stasia A, Redaelli S, Ceccon M, Mologni L, Messa C, Guerra L, Giudici G, Sala E, et al: Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 106:djt3782014. View Article : Google Scholar : PubMed/NCBI | |
Mossé YP, Voss SD, Lim MS, Rolland D, Minard CG, Fox E, Adamson P, Wilner K, Blaney SM and Weigel BJ: Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: A children's oncology group study. J Clin Oncol. 35:3215–3221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gambacorti-Passerini C, Orlov S, Zhang L, Braiteh F, Huang H, Esaki T, Horibe K, Ahn JS, Beck JT, Edenfield WJ, et al: Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): A phase 1b open-label study. Am J Hematol. 93:607–614. 2018. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and Drug (FDA): FDA approves crizotinib for children and young adults with relapsed or refractory, systemic anaplastic large cell lymphoma. FDA; Silver Spring, MD: 2021, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-crizotinib-children-and-young-adults-relapsed-orrefractory-systemic-anaplastic-large. Accessed January 15, 2021. | |
Mahuad CV, Repáraz Mde L, Zerga ME, Aizpurua MF, Casali C and Garate G: Three years sustained complete remission achieved in a primary refractory ALK-positive anaplastic T large cell lymphoma treated with crizotinib. Rare Tumors. 8:62662016. View Article : Google Scholar : PubMed/NCBI | |
John TD, Naik S, Leung K, Sasa G, Martinez C and Krance RA: Allogeneic hematopoietic cell transplant following crizotinib monotherapy for relapsed/refractory anaplastic large cell lymphoma. Pediatr Transplant. 22:e132102018. View Article : Google Scholar : PubMed/NCBI | |
Ordemann R, Stöhlmacher J, Beuthien-Baumann B, Platzek I, van den Hoff J, Kroschinsky F, Middeke JM, Platzbecker U, Zietz C, Bornhäuser M and Ehninger G: Use of targeted therapy for refractory ALK-positive anaplastic large cell lymphoma as a bridging strategy prior to allogeneic transplantation. Ann Hematol. 92:125–127. 2013. View Article : Google Scholar | |
Cleary JM, Rodig S, Barr PM, Shinagare AB, Clark JW, Shapiro GI and Armand P: Crizotinib as salvage and maintenance with allogeneic stem cell transplantation for refractory anaplastic large cell lymphoma. J Natl Compr Canc Netw. 12:323–326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shelikhova LN, Fominykh VV, Abramov DS, Myakova NV, Maschan MA and Maschan AA: Use of crizotinib for refractory ALK-positive lymphomas. Ter Arkh. 89:51–56. 2017. | |
Sun X, Fang X and Jiang Y: Successful combination of crizotinib and hematopoietic stem cell transplantation in relapsed ALK-positive ALCL. Indian J Cancer. 58:108–111. 2021.PubMed/NCBI | |
Reed DR, Hall RD, Gentzler RD, Volodin L, Douvas MG and Portell CA: Treatment of refractory ALK rearranged anaplastic large cell lymphoma with alectinib. Clin Lymphoma Myeloma Leuk. 19:e247–e250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gambacorti-Passerini C, Mussolin L and Brugieres L: Abrupt relapse of ALK-Positive lymphoma after discontinuation of crizotinib. N Engl J Med. 374:95–96. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chihara D, Wong S, Feldman T, Fanale MA, Sanchez L, Connors JM, Savage KJ and Oki Y: Outcome of patients with relapsed or refractory anaplastic large cell lymphoma who have failed brentuximab vedotin. Hematol Oncol. 37:35–38. 2019. View Article : Google Scholar | |
Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F, Bommert K, Mechta-Grigoriou F, Stein H, Dörken B and Scheidereit C: Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 21:4104–4113. 2002. View Article : Google Scholar : PubMed/NCBI | |
Staber PB, Vesely P, Haq N, Ott RG, Funato K, Bambach I, Fuchs C, Schauer S, Linkesch W, Hrzenjak A, et al: The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood. 110:3374–3383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Laimer D, Dolznig H, Kollmann K, Vesely PW, Schlederer M, Merkel O, Schiefer AI, Hassler MR, Heider S, Amenitsch L, et al: PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 18:1699–1704. 2012. View Article : Google Scholar : PubMed/NCBI | |
Laimer-Gruber D: Blockade of the PDGF receptor: A new and effective therapy option for NPM-ALK-dependent lymphoma. Pathologe. 35(Suppl 2): S185–S186. 2014. View Article : Google Scholar | |
Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA and Skorski T: Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61:2194–2199. 2001.PubMed/NCBI | |
Bai RY, Ouyang T, Miething C, Morris SW, Peschel C and Duyster J: Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 96:4319–4327. 2000. View Article : Google Scholar : PubMed/NCBI | |
Slupianek A and Skorski T: NPM/ALK downregulates p27Kip1 in a PI-3K-dependent manner. Exp Hematol. 32:1265–1271. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rassidakis GZ, Feretzaki M, Atwell C, Grammatikakis I, Lin Q, Lai R, Claret FX, Medeiros LJ and Amin HM: Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood. 105:827–829. 2005. View Article : Google Scholar | |
Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, Karras JG, Levy DE and Inghirami G: Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 11:623–629. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N, Morris S, Skorski T and Wasik MA: Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol. 168:466–474. 2002. View Article : Google Scholar | |
Marzec M, Kasprzycka M, Liu X, Raghunath PN, Wlodarski P and Wasik MA: Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene. 26:813–821. 2007. View Article : Google Scholar | |
Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN, Bucki R, Wlodarski P and Wasik MA: Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene. 26:5606–5614. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX and Rassidakis GZ: Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 66:6589–6597. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Yin M, Zhu Y, Gu L, Zhang Y, Li Q, Jia C and Ma Z: Prognostic significance and therapeutic potential of the activation of anaplastic lymphoma kinase/protein kinase B/mammalian target of rapamycin signaling pathway in anaplastic large cell lymphoma. BMC cancer. 13:4712013. View Article : Google Scholar : PubMed/NCBI | |
Li JF, Li GD, Gu L, Liu WP, Li FY, Liao DY and Ma ZG: Study on activation of AKT/mTOR pathway in anaplastic large cell lymphoma. Zhonghua Xue Ye Xue Za Zhi. 29:649–653. 2008.In Chinese. | |
Jundt F, Raetzel N, Müller C, Calkhoven CF, Kley K, Mathas S, Lietz A, Leutz A and Dörken B: A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein {beta} and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas. Blood. 106:1801–1807. 2005. View Article : Google Scholar : PubMed/NCBI | |
Witzig TE, Reeder C, Han JJ, LaPlant B, Stenson M, Tun HW, Macon W, Ansell SM, Habermann TM, Inwards DJ, et al: The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 126:328–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Shin DY, Kim JS, Yoon DH, Lee WS, Lee H, Do YR, Kang HJ, Eom HS, Ko YH, et al: A phase II study of everolimus (RAD001), an mTOR inhibitor plus CHOP for newly diagnosed peripheral T-cell lymphomas. Ann Oncol. 27:712–718. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chumsri S, Zhao M, Garofalo M, Burger A, Hamburger A, Zhao F and Rapoport A: Inhibition of the mammalian target of rapamycin (mTOR) in a case of refractory primary cutaneous anaplastic large cell lymphoma. Leuk Lymphoma. 49:359–361. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Koh Y and Yoon SS: Synergistic effect of alectinib and everolimus on ALK-positive anaplastic large cell lymphoma growth inhibition. Anticancer Res. 40:1395–1403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Kim JW, Jung WJ, Koh Y and Yoon SS: Crizotinib in combination with everolimus synergistically inhibits proliferation of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res Treat. 50:599–613. 2018. View Article : Google Scholar | |
Butte MJ, Keir ME, Phamduy TB, Sharpe AH and Freeman GJ: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 27:111–122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Mezzadra R and Schumacher TN: Regulation and function of the PD-L1 checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and Drug (FDA): FDA expands pembrolizumab indication for first-line treatment of NSCLC (TPS ≥1%). FDA; Silver Spring, MD: 2019, https://www.fda.gov/drugs/fda-expands-pembrolizumabindication-first-line-treatment-nsclc-tps-1. Accessed April 11, 2019. | |
U.S. Food and Drug (FDA): FDA extends approval of pembrolizumab for classical Hodgkin lymphoma. FDA; Silver Spring, MD: 2020, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-extends-approval-pembrolizumab-classical-hodgkin-lymphoma. Accessed November 10, 2020. | |
Durvalumab (Imfinzi). https://www.fda.gov/drugs/resourcesinformation-approved-drugs/durvalumab-imfinzi. Journal. 2017 | |
Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A, Ohmori K and Uchiyama T: B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci. 100:2093–2100. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang JP, Song Z, Wang HB, Lang L, Yang YZ, Xiao W, Webster DE, Wei W, Barta SK, Kadin ME, et al: A novel model of controlling PD-L1 expression in ALK+ anaplastic large cell lymphoma revealed by CRISPR screening. Blood. 134:171–185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, Wang HY, Wysocka M, Cheng M, Ruggeri BA and Wasik MA: Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 105:20852–20857. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Li S, Medeiros LJ, Lin P, Wang SA, Tang G, Yin CC, You MJ, Khoury JD, Iyer SP, et al: PD-L1 expression is associated with ALK positivity and STAT3 activation, but not outcome in patients with systemic anaplastic large cell lymphoma. Mod Pathol. 33:324–333. 2020. View Article : Google Scholar | |
Kong J, Dasari S and Feldman AL: PD-L1 expression in anaplastic large cell lymphoma. Mod Pathol. 33:1232–1233. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rigaud C, Abbou S, Minard-Colin V, Geoerger B, Scoazec JY, Vassal G, Jaff N and Heuberger L: Valteau-Couanet D and Brugieres L: Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr Blood Cancer. 65:e269022018. View Article : Google Scholar | |
Hebart H, Lang P and Woessmann W: Nivolumab for refractory anaplastic large cell lymphoma: A case report. Ann Intern Med. 165:607–608. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chan TS, Khong PL and Kwong YL: Pembrolizumab for relapsed anaplastic large cell lymphoma after allogeneic haematopoietic stem cell transplantation: Efficacy and safety. Ann Hematol. 95:1913–1915. 2016. View Article : Google Scholar : PubMed/NCBI | |
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, et al: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 380:45–56. 2019. View Article : Google Scholar | |
Rogers AM and Brammer JE: Hematopoietic cell transplantation and adoptive cell therapy in peripheral T cell lymphoma. Curr Hematol Malig Rep. 15:316–332. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lollies A, Hartmann S, Schneider M, Bracht T, Weiß AL, Arnolds J, Klein-Hitpass L, Sitek B, Hansmann ML, Küppers R and Weniger MA: An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia. 32:92–101. 2018. View Article : Google Scholar | |
Weilemann A, Grau M, Erdmann T, Merkel O, Sobhiafshar U, Anagnostopoulos I, Hummel M, Siegert A, Hayford C, Madle H, et al: Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood. 125:124–132. 2015. View Article : Google Scholar | |
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher DW: MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI | |
Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E, Panaretakis T, Grander D, Medeiros LJ, Young KH and Rassidakis GZ: PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia. 31:1633–1637. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shao RG and Zhen YS: Enediyne anticancer antibiotic lidamycin: Chemistry, biology and pharmacology. Anticancer Agents Med Chem. 8:123–131. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shao RG and Zhen YS: Relationship between the molecular composition of C1027, a new macromolecular antibiotic with enediyne chromophore, and its antitumor activity. Yao Xue Xue Bao. 30:336–342. 1995.In Chinese. | |
Wang R, Li L, Zhang S, Li Y, Wang X, Miao Q and Zhen Y: A novel enediyne-integrated antibody-drug conjugate shows promising antitumor efficacy against CD30+ lymphomas. Mol Oncol. 12:339–355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Li L, Duan A, Li Y, Liu X, Miao Q, Gong J and Zhen Y: Crizotinib enhances anti-CD30-LDM induced antitumor efficacy in NPM-ALK positive anaplastic large cell lymphoma. Cancer Lett. 448:84–93. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hwang J, Song I, Lee K, Kim HR, Hong EH, Hwang JS, Ahn SH and Lee J: KRCA-0008 suppresses ALK-positive anaplastic large-cell lymphoma growth. Invest New Drugs. 38:1282–1291. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Wang J, Du J, Wang L, Zhou X, Chang X, Li Z, Zhai X, Zuo D and Wu Y: A novel ALK inhibitor ZYY inhibits Karpas299 cell growth in vitro and in a mouse xenograft model and induces protective autophagy. Toxicol Appl Pharmacol. 383:1147812019. View Article : Google Scholar : PubMed/NCBI | |
Prutsch N, Gurnhofer E, Suske T, Liang HC, Schlederer M, Roos S, Wu LC, Simonitsch-Klupp I, Alvarez-Hernandez A, Kornauth C, et al: Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 33:696–709. 2019. View Article : Google Scholar |