1
|
Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X and
Hu T: Emerging insights into molecular mechanisms underlying
pyroptosis and functions of inflammasomes in diseases. J Cell
Physiol. 235:3207–3221. 2020. View Article : Google Scholar
|
2
|
Wang YY, Liu XL and Zhao R: Induction of
pyroptosis and its implications in cancer management. Front Oncol.
9:9712019. View Article : Google Scholar
|
3
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar
|
4
|
Broz P, Pelegrin P and Shao F: The
gasdermins, a protein family executing cell death and inflammation.
Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar
|
5
|
Ding J, Wang K, Liu W, She Y, Sun Q, Shi
J, Sun H, Wang DC and Shao F: Pore-forming activity and structural
autoinhibition of the gasdermin family. Nature. 535:111–116. 2016.
View Article : Google Scholar
|
6
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H,
Wang K and Shao F: Chemotherapy drugs induce pyroptosis through
caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017.
View Article : Google Scholar
|
7
|
An H, Heo JS, Kim P, Lian Z, Lee S, Park
J, Hong E, Pang K, Park Y, Ooshima A, et al: Tetraarsenic hexoxide
enhances generation of mitochondrial ROS to promote pyroptosis by
inducing the activation of caspase-3/GSDME in triple-negative
breast cancer cells. Cell Death Dis. 12:1592021. View Article : Google Scholar
|
8
|
Zhang CC, Li CG, Wang YF, Xu LH, He XH,
Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic
paclitaxel and cisplatin differentially induce pyroptosis in A549
lung cancer cells via caspase-3/GSDME activation. Apoptosis.
24:312–325. 2019. View Article : Google Scholar
|
9
|
Wang Y, Yin B, Li D, Wang G, Han X and Sun
X: GSDME mediates caspase-3-dependent pyroptosis in gastric cancer.
Biochem Biophys Res Commun. 495:1418–1425. 2018. View Article : Google Scholar
|
10
|
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J,
Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3
determines lobaplatin-induced pyroptosis in colon cancer cells.
Cell Death Dis. 10:1932019. View Article : Google Scholar
|
11
|
Chen MY, Ye XJ, He XH and Ouyang DY: The
signaling pathways regulating NLRP3 inflammasome activation.
Inflammation. 44:1229–1245. 2021. View Article : Google Scholar
|
12
|
Ju X, Yang Z, Zhang H and Wang Q: Role of
pyroptosis in cancer cells and clinical applications. Biochimie.
185:78–86. 2021. View Article : Google Scholar
|
13
|
Skandarajah AR, Lynch AC, Mackay JR, Ngan
S and Heriot AG: The role of intraoperative radiotherapy in solid
tumors. Ann Surg Oncol. 16:735–744. 2009. View Article : Google Scholar
|
14
|
Batar B, Mutlu T, Bostanci M, Akin M,
Tuncdemir M, Bese N and Guven M: DNA repair and apoptosis: Roles in
radiotherapy-related acute reactions in breast cancer patients.
Cell Mol Biol (Noisy-le-grand). 64:64–70. 2018. View Article : Google Scholar
|
15
|
Xiao J, Wang C, Yao JC, Alippe Y, Yang T,
Kress D, Sun K, Kostecki KL, Monahan JB, Veis DJ, et al: Radiation
causes tissue damage by dysregulating inflammasome-gasdermin D
signaling in both host and transplanted cells. PLoS Biol.
18:e30008072020. View Article : Google Scholar
|
16
|
Liao H, Wang H, Rong X, Li E, Xu RH and
Peng Y: Mesenchymal stem cells attenuate radiation-induced brain
injury by inhibiting microglia pyroptosis. Biomed Res Int.
2017:19489852017. View Article : Google Scholar
|
17
|
Gao J, Peng S, Shan X, Deng G, Shen L, Sun
J, Jiang C, Yang X, Chang Z, Sun X, et al: Inhibition of AIM2
inflammasome-mediated pyroptosis by Andrographolide contributes to
amelioration of radiation-induced lung inflammation and fibrosis.
Cell Death Dis. 10:9572019. View Article : Google Scholar
|
18
|
Wu D, Han R, Deng S, Liu T, Zhang T, Xie H
and Xu Y: Protective effects of flagellin A N/C against
radiation-induced NLR pyrin domain containing 3
inflammasome-dependent pyroptosis in intestinal cells. Int J Radiat
Oncol Biol Phys. 101:107–117. 2018. View Article : Google Scholar
|
19
|
Liu YG, Chen JK, Zhang ZT, Ma XJ, Chen YC,
Du XM, Liu H, Zong Y and Lu GC: NLRP3 inflammasome activation
mediates radiation-induced pyroptosis in bone marrow-derived
macrophages. Cell Death Dis. 8:e25792017. View Article : Google Scholar
|
20
|
Bergmann JH and Spector DL: Long
non-coding RNAs: Modulators of nuclear structure and function. Curr
Opin Cell Biol. 26:10–18. 2014. View Article : Google Scholar
|
21
|
Maruyama R and Suzuki H: Long noncoding
RNA involvement in cancer. BMB Rep. 45:604–611. 2012. View Article : Google Scholar
|
22
|
Yang XD, Xu HT, Xu XH, Ru G, Liu W, Zhu
JJ, Wu YY, Zhao K, Wu Y, Xing CG, et al: Knockdown of long
non-coding RNA HOTAIR inhibits proliferation and invasiveness and
improves radiosensitivity in colorectal cancer. Oncol Rep.
35:479–487. 2016. View Article : Google Scholar
|
23
|
Jing L, Yuan W, Ruofan D, Jinjin Y and
Haifeng Q: HOTAIR enhanced aggressive biological behaviors and
induced radio-resistance via inhibiting p21 in cervical cancer.
Tumour Biol. 36:3611–3619. 2015. View Article : Google Scholar
|
24
|
Zhou JM, Liang R, Zhu SY, Wang H, Zou M,
Zou WJ and Nie SL: LncRNA WWC2-AS1 functions AS a novel competing
endogenous RNA in the regulation of FGF2 expression by sponging
miR-16 in radiation-induced intestinal fibrosis. BMC Cancer.
19:6472019. View Article : Google Scholar
|
25
|
Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan
X, Rao J, Xiong H, Yu S, Yuan X, et al: LncRNA OIP5-AS1 regulates
radioresistance by targeting DYRK1A through miR-369-3p in
colorectal cancer cells. Eur J Cell Biol. 97:369–378. 2018.
View Article : Google Scholar
|
26
|
Tan C, Liu W, Zheng ZH and Wan XG: LncRNA
HOTTIP inhibits cell pyroptosis by targeting miR-148a-3p/AKT2 axis
in ovarian cancer. Cell Biol Int. 45:1487–1497. 2021. View Article : Google Scholar
|
27
|
Xu Y, Fang H, Xu Q, Xu C, Yang L and Huang
C: LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated
pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR.
Cell Cycle. 19:3054–3065. 2020. View Article : Google Scholar
|
28
|
She Q, Shi P, Xu SS, Xuan HY, Tao H, Shi
KH and Yang Y: DNMT1 methylation of LncRNA GAS5 leads to cardiac
fibroblast pyroptosis via affecting NLRP3 axis. Inflammation.
43:1065–1076. 2020. View Article : Google Scholar
|
29
|
Meng L, Lin H, Zhang J, Lin N, Sun Z, Gao
F, Luo H, Ni T, Luo W, Chi J and Guo H: Doxorubicin induces
cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional
stabilization of NLR family pyrin domain containing 3. J Mol Cell
Cardiol. 136:15–26. 2019. View Article : Google Scholar
|
30
|
Cui J, Fu HJ, Feng JJ, Zhu J, Tie Y, Xing
RY, Wang CF and Zheng XF: The construction of miRNA expression
library for human. Prog Biochem Biophy. 34:389–394. 2007.
|
31
|
Kong Y, Feng Z, Chen A, Qi Q, Han M, Wang
S, Zhang Y, Zhang X, Yang N, Wang J, et al: The natural flavonoid
galangin elicits apoptosis, pyroptosis, and autophagy in
glioblastoma. Front Oncol. 9:9422019. View Article : Google Scholar
|
32
|
Li X, Wang X, Song W, Xu H, Huang R, Wang
Y, Zhao W, Xiao Z and Yang X: Oncogenic properties of NEAT1 in
prostate cancer cells depend on the CDC5L-AGRN transcriptional
regulation circuit. Cancer Res. 78:4138–4149. 2018. View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
34
|
Rogers CJ, Lukaszewicz AI, Yamada-Hanff J,
Micewicz ED, Ratikan JA, Starbird MA, Miller TA, Nguyen C, Lee JT,
Olafsen T, et al: Identification of miRNA signatures associated
with radiation-induced late lung injury in mice. PLoS One.
15:e02324112020. View Article : Google Scholar
|
35
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar
|
36
|
Cai J, Yi M, Tan Y, Li X, Li G, Zeng Z,
Xiong W and Xiang B: Natural product triptolide induces
GSDME-mediated pyroptosis in head and neck cancer through
suppressing mitochondrial hexokinase-II. J Exp Clin Cancer Res.
40:1902021. View Article : Google Scholar
|
37
|
Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B,
Tao Y, Wu L, Xu A, Lu H and Zhao G: Radiation induces apoptosis
primarily through the intrinsic pathway in mammalian cells. Cell
Signal. 62:1093372019. View Article : Google Scholar
|
38
|
Treiber T, Treiber N and Meister G:
Regulation of microRNA biogenesis and function. Thromb Haemost.
107:605–610. 2012. View Article : Google Scholar
|
39
|
Bamodu OA, Huang WC, Lee WH, Wu A, Wang
LS, Hsiao M, Yeh CT and Chao TY: Aberrant KDM5B expression promotes
aggressive breast cancer through MALAT1 overexpression and
downregulation of hsa-miR-448. BMC Cancer. 16:1602016. View Article : Google Scholar
|
40
|
Jiang X, Zhou Y, Sun AJ and Xue JL: NEAT1
contributes to breast cancer progression through modulating miR-448
and ZEB1. J Cell Physiol. 233:8558–8566. 2018. View Article : Google Scholar
|
41
|
Deng J, Deng H, Liu C, Liang Y and Wang S:
Long non-coding RNA OIP5-AS1 functions as an oncogene in lung
adenocarcinoma through targeting miR-448/Bcl-2. Biomed
Pharmacother. 98:102–110. 2018. View Article : Google Scholar
|
42
|
Zhao L, Kong H, Sun H, Chen Z, Chen B and
Zhou M: LncRNA-PVT1 promotes pancreatic cancer cells proliferation
and migration through acting as a molecular sponge to regulate
miR-448. J Cell Physiol. 233:4044–4055. 2018. View Article : Google Scholar
|
43
|
Pei X, Wang X and Li H: LncRNA SNHG1
regulates the differentiation of Treg cells and affects the immune
escape of breast cancer via regulating miR-448/IDO. Int J Biol
Macromol. 118:24–30. 2018. View Article : Google Scholar
|
44
|
Ghandhi SA, Smilenov LB, Elliston CD,
Chowdhury M and Amundson SA: Radiation dose-rate effects on gene
expression for human biodosimetry. BMC Med Genomics. 8:222015.
View Article : Google Scholar
|
45
|
Caudell DL, Michalson KT, Andrews RN, Snow
WW, Bourland JD, DeBo RJ, Cline JM, Sempowski GD and Register TC:
Transcriptional profiling of non-human primate lymphoid organ
responses to total-body irradiation. Radiat Res. 192:40–52. 2019.
View Article : Google Scholar
|
46
|
Lu X, Ma O, Nguyen TA, Jones SN, Oren M
and Donehower LA: The Wip1 Phosphatase acts as a gatekeeper in the
p53-Mdm2 autoregulatory loop. Cancer Cell. 12:342–354. 2007.
View Article : Google Scholar
|
47
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B,
Zhu J, Ding Y and Zheng X: RNA profiling reveals a common mechanism
of histone gene downregulation and complementary effects for
radioprotectants in response to ionizing radiation. Dose Response.
Oct 16–2020.Epub ahead of print. View Article : Google Scholar
|
48
|
Wang Y, Chen X, Tsai S, Thomas A, Shizuru
JA and Cao TM: Fine mapping of the Bmgr5 quantitative trait locus
for allogeneic bone marrow engraftment in mice. Immunogenetics.
65:585–596. 2013. View Article : Google Scholar
|
49
|
Chao L, Li Z, Zhou J, Chen W, Li Y, Lv W,
Guo A, Qu Q and Guo S: Shen-Ling-Bai-Zhu-San improves dextran
sodium sulfate-induced colitis by inhibiting
caspase-1/caspase-11-mediated pyroptosis. Front Pharmacol.
11:8142020. View Article : Google Scholar
|
50
|
Jie F, Xiao S, Qiao Y, You Y, Feng Y, Long
Y, Li S, Wu Y, Li Y and Du Q: Kuijieling decoction suppresses
NLRP3-Mediated pyroptosis to alleviate inflammation and
experimental colitis in vivo and in vitro. J Ethnopharmacol.
264:1132432021. View Article : Google Scholar
|
51
|
Deng Z, Ni J, Wu X, Wei H and Peng J: GPA
peptide inhibits NLRP3 inflammasome activation to ameliorate
colitis through AMPK pathway. Aging (Albany NY). 12:18522–18544.
2020. View Article : Google Scholar
|
52
|
Wu T, Liu W, Fan T, Zhong H, Zhou H, Guo W
and Zhu X: 5-Androstenediol prevents radiation injury in mice by
promoting NF-κB signaling and inhibiting AIM2 inflammasome
activation. Biomed Pharmacother. 121:1095972020. View Article : Google Scholar
|
53
|
Wu LS, Liu Y, Wang XW, Xu B, Lin YL, Song
Y, Dong Y, Liu JL, Wang XJ, Liu S, et al: LPS enhances the
chemosensitivity of oxaliplatin in HT29 cells via GSDMD-mediated
pyroptosis. Cancer Manag Res. 12:10397–10409. 2020. View Article : Google Scholar
|
54
|
Wang H, Lu B and Chen J: Knockdown of
lncRNA SNHG1 attenuated Aβ25-35-inudced neuronal injury via
regulating KREMEN1 by acting as a ceRNA of miR-137 in neuronal
cells. Biochem Biophys Res Commun. 518:438–444. 2019. View Article : Google Scholar
|
55
|
Liu X, Song W, Zhang X, Long F, Yin J, He
X and Lv L: Downregulating LncRNA XIST attenuated contrast-induced
nephropathy injury via regulating miR-133a-3p/NLRP3 axis. J Thromb
Thrombolysis. Jan 2–2021.Epub ahead of print. View Article : Google Scholar
|
56
|
Meng J, Ding T, Chen Y, Long T, Xu Q, Lian
W and Liu W: LncRNA-Meg3 promotes Nlrp3-mediated microglial
inflammation by targeting miR-7a-5p. Int Immunopharmacol.
90:1071412021. View Article : Google Scholar
|
57
|
Zhong F, Zhang W, Cao Y, Wen Q, Cao Y, Lou
B, Li J, Shi W, Liu Y, Luo R and Chen C: LncRNA NEAT1 promotes
colorectal cancer cell proliferation and migration via regulating
glial cell-derived neurotrophic factor by sponging miR-196a-5p.
Acta Biochim Biophys Sin (Shanghai). 50:1190–1199. 2018. View Article : Google Scholar
|
58
|
Liu H, Li A, Sun Z, Zhang J and Xu H: Long
non-coding RNA NEAT1 promotes colorectal cancer progression by
regulating miR-205-5p/VEGFA axis. Hum Cell. 33:386–396. 2020.
View Article : Google Scholar
|
59
|
Liu F, Ai FY, Zhang DC, Tian L, Yang ZY
and Liu SJ: LncRNA NEAT1 knockdown attenuates autophagy to elevate
5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer
Med. 9:1079–1091. 2020. View Article : Google Scholar
|
60
|
Wang X, Jiang G, Ren W, Wang B, Yang C and
Li M: LncRNA NEAT1 regulates 5-Fu sensitivity, apoptosis and
invasion in colorectal cancer through the MiR-150-5p/CPSF4 axis.
Onco Targets Ther. 13:6373–6383. 2020. View Article : Google Scholar
|
61
|
Han D, Wang J and Cheng G: LncRNA NEAT1
enhances the radio-resistance of cervical cancer via
miR-193b-3p/CCND1 axis. Oncotarget. 9:2395–2409. 2017. View Article : Google Scholar
|
62
|
Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L,
Zhang K, Zeng D and Liao R: The long non-coding RNA NEAT1 regulates
epithelial to mesenchymal transition and radioresistance in through
miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol.
37:11733–11741. 2016. View Article : Google Scholar
|
63
|
Blume CJ, Hotz-Wagenblatt A, Hüllein J,
Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A,
Benner A, et al: p53-dependent non-coding RNA networks in chronic
lymphocytic leukemia. Leukemia. 29:2015–2023. 2015. View Article : Google Scholar
|
64
|
Shamloo B and Usluer S: p21 in cancer
research. Cancers (Basel). 11:11782019. View Article : Google Scholar
|
65
|
Guo L, Huang S and Wang X: PUMA mediates
the anti-cancer effect of osimertinib in colon cancer cells. Onco
Targets Ther. 10:5281–5288. 2017. View Article : Google Scholar
|
66
|
Jiang M, Qi L, Li L and Li Y: The
caspase-3/GSDME signal pathway as a switch between apoptosis and
pyroptosis in cancer. Cell Death Discov. 6:1122020. View Article : Google Scholar
|