TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex
- Authors:
- Tanveer Ahmad
- Waseem Ashraf
- Abdulkhaleg Ibrahim
- Liliyana Zaayter
- Christian D. Muller
- Ali Hamiche
- Yves Mély
- Christian Bronner
- Marc Mousli
-
Affiliations: Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France, Hubert Curien Pluridisciplinary Institute (IPHC), CNRS UMR‑7178, University of Strasbourg, 67401 Illkirch, France - Published online on: September 23, 2021 https://doi.org/10.3892/ijo.2021.5269
- Article Number: 89
-
Copyright: © Ahmad et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P and Bronner C: ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res. 60:121–128. 2000.PubMed/NCBI | |
Hopfner R, Mousli M, Garnier JM, Redon R, du Manoir S, Chatton B, Ghyselinck N, Oudet P and Bronner C: Genomic structure and chromosomal mapping of the gene coding for ICBP90, a protein involved in the regulation of the topoisomerase IIalpha gene expression. Gene. 266:15–23. 2001. View Article : Google Scholar | |
Krifa M, Alhosin M, Muller CD, Gies JP, Chekir-Ghedira L, Ghedira K, Mély Y, Bronner C and Mousli M: Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J Exp Clin Cancer Res. 32:302013. View Article : Google Scholar | |
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C and Mousli M: The epigenetic integrator UHRF1: On the road to become a universal biomarker for cancer. Oncotarget. 8:51946–51962. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H and Schini-Kerth VB: The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 115:419–434. 2007. View Article : Google Scholar | |
Bostick M, Kim JK, Estève PO, Clark A, Pradhan S and Jacobsen SE: UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 317:1760–1764. 2007. View Article : Google Scholar | |
Bronner C, Alhosin M, Hamiche A and Mousli M: Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes (Basel). 10:652019. View Article : Google Scholar | |
Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH and Dhe-Paganon S: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 455:822–825. 2008. View Article : Google Scholar | |
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, et al: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 450:908–912. 2007. View Article : Google Scholar : PubMed/NCBI | |
Arita K, Ariyoshi M, Tochio H, Nakamura Y and Shirakawa M: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 455:818–821. 2008. View Article : Google Scholar | |
Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, et al: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem. 286:24300–24311. 2011. View Article : Google Scholar | |
Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, et al: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell. 43:275–284. 2011. View Article : Google Scholar | |
Hu L, Li Z, Wang P, Lin Y and Xu Y: Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2. Cell Res. 21:1374–1378. 2011. View Article : Google Scholar | |
Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang J, Yam GC, et al: Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell. 16:5621–5629. 2005. View Article : Google Scholar | |
Ibrahim A, Alhosin M, Papin C, Ouararhni K, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mély Y, Hamiche A, et al: Thymoquinone challenges UHRF1 to commit auto-ubiquitination: A key event for apoptosis induction in cancer cells. Oncotarget. 9:28599–28611. 2018. View Article : Google Scholar | |
Tauber M and Fischle W: Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus. 6:123–132. 2015. View Article : Google Scholar | |
Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S, Kao HY, Xu Y, Willis J, Markowitz SD, et al: DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal. 3:ra802010. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, Shimamura S, Arita K, Kodama T, Ishikawa F, et al: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 502:249–253. 2013. View Article : Google Scholar | |
Qin W, Wolf P, Liu N, Link S, Smets M, La Mastra F, Forné I, Pichler G, Hörl D, Fellinger K, et al: DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 25:911–929. 2015. View Article : Google Scholar | |
Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S and Bartke T: Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol Cell. 72:739–752.e9. 2018. View Article : Google Scholar | |
Mishima Y, Brueckner L, Takahashi S, Kawakami T, Otani J, Shinohara A, Takeshita K, Garvilles RG, Watanabe M, Sakai N, et al: Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes Cells. 25:22–32. 2020. View Article : Google Scholar | |
Li T, Wang L, Du Y, Xie S, Yang X, Lian F, Zhou Z and Qian C: Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nuclic Acids Res. 46:3218–3231. 2018. View Article : Google Scholar | |
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M and Bronner C: Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. J Exp Clin Cancer Res. 35:1742016. View Article : Google Scholar : PubMed/NCBI | |
Alhosin M, Sharif T, Mousli M, Etienne-Selloum N, Fuhrmann G, Schini-Kerth VB and Bronner C: Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res. 30:412011. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Shi D and Gu W: Negative regulation of the acetyltransferase TIP60-p53 interplay by UHRF1 (ubiquitin-like with PHD and RING finger domains 1). J Biol Chem. 288:19581–19592. 2013. View Article : Google Scholar : | |
Guan D, Factor D, Liu Y, Wang Z and Kao HY: The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene. 32:3819–3828. 2013. View Article : Google Scholar : | |
Achour M, Fuhrmann G, Alhosin M, Rondé P, Chataigneau T, Mousli M, Schini-Kerth VB and Bronner C: UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity. Biochem Biophys Res Commun. 390:523–528. 2009. View Article : Google Scholar | |
Kamine J, Elangovan B, Subramanian T, Coleman D and Chinnadurai G: Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology. 216:357–366. 1996. View Article : Google Scholar | |
Yamamoto T and Horikoshi M: Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem. 272:30595–30598. 1997. View Article : Google Scholar | |
Hilfiker A, Hilfiker-Kleiner D, Pannuti A and Lucchesi JC: mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16:2054–2060. 1997. View Article : Google Scholar | |
Lee KK and Workman JL: Histone acetyltransferase complexes: One size doesn't fit all. Nat Rev Mol Cell Biol. 8:284–295. 2007. View Article : Google Scholar | |
Doyon Y, Selleck W, Lane WS, Tan S and Côté J: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol. 24:1884–1896. 2004. View Article : Google Scholar | |
Voss AK and Thomas T: MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays. 31:1050–1061. 2009. View Article : Google Scholar | |
Sheikh BN and Akhtar A: The many lives of KATs-detectors, integrators and modulators of the cellular environment. Nat Rev Genet. 20:7–23. 2019. View Article : Google Scholar | |
Kim CH, Kim JW, Jang SM, An JH, Seo SB and Choi KH: The chromodomain-containing histone acetyltransferase TIP60 acts as a code reader, recognizing the epigenetic codes for initiating transcription. Biosci Biotechnol Biochem. 79:532–538. 2015. View Article : Google Scholar | |
Squatrito M, Gorrini C and Amati B: Tip60 in DNA damage response and growth control: Many tricks in one HAT. Trends Cell Biol. 16:433–442. 2006. View Article : Google Scholar | |
Kimura A, Matsubara K and Horikoshi M: A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes. J Biochem. 138:647–662. 2005. View Article : Google Scholar | |
Kim MY, Ann EJ, Kim JY, Mo JS, Park JH, Kim SY, Seo MS and Park HS: Tip60 histone acetyltransferase acts as a negative regulator of Notch1 signaling by means of acetylation. Mol Cell Biol. 27:6506–6519. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sapountzi V, Logan IR and Robson CN: Cellular functions of TIP60. Int J Biochem Cell Biol. 38:1496–1509. 2006. View Article : Google Scholar | |
Putnik J, Zhang CD, Archangelo LF, Tizazu B, Bartels S, Kickstein M, Greif PA and Bohlander SK: The interaction of ETV6 (TEL) and TIP60 requires a functional histone acetyltransferase domain in TIP60. Biochim Biophys Acta. 1772:1211–1224. 2007. View Article : Google Scholar | |
Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J and Nakatani Y: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 104:463–473. 2000. View Article : Google Scholar | |
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F and Bernard-Gallon D: A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics. 7:1351–1363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Idrissou M, Rifaï K, Daures M, Penault-Llorca F, Bignon YJ and Bernard-Gallon D: Exciting history of Tip60 and its companions in carcinogenesis across the heterochromatin landscapes. OMICS. 22:626–628. 2018. View Article : Google Scholar : PubMed/NCBI | |
Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM, Livingston DM and Amati B: MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4:575–580. 2003. View Article : Google Scholar | |
Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, et al: A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 428:431–437. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mo F, Zhuang X, Liu X, Yao PY, Qin B, Su Z, Zang J, Wang Z, Zhang J, Dou Z, et al: Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 12:226–232. 2016. View Article : Google Scholar : PubMed/NCBI | |
DeRan M, Pulvino M, Greene E, Su C and Zhao J: Transcriptional activation of histone genes requires NPAT-dependent recruitment of TRRAP-Tip60 complex to histone promoters during the G1/S phase transition. Mol Cell Biol. 28:435–447. 2008. View Article : Google Scholar | |
Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M, Ikura T, Kohno K, Shima H, Suzuki H, et al: Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev. 24:333–338. 2010. View Article : Google Scholar : PubMed/NCBI | |
Taubert S, Gorrini C, Frank SR, Parisi T, Fuchs M, Chan HM, Livingston DM and Amati B: E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol. 24:4546–4556. 2004. View Article : Google Scholar : | |
Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS and Lough J: Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn. 238:2912–2921. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sakuraba K, Yasuda T, Sakata M, Kitamura YH, Shirahata A, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, et al: Down-regulation of Tip60 gene as a potential marker for the malignancy of colorectal cancer. Anticancer Res. 29:3953–3955. 2009. | |
Sakuraba K, Yokomizo K, Shirahata A, Goto T, Saito M, Ishibashi K, Kigawa G, Nemoto H and Hibi K: TIP60 as a potential marker for the malignancy of gastric cancer. Anticancer Res. 31:77–79. 2011.PubMed/NCBI | |
Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, et al: Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature. 448:1063–1067. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C, Chen C, Chung CH, Huber O, Rose DW, et al: Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature. 434:921–926. 2005. View Article : Google Scholar | |
Jha S, Vande Pol S, Banerjee NS, Dutta AB, Chow LT and Dutta A: Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell. 38:700–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brown JA, Bourke E, Eriksson LA and Kerin MJ: Targeting cancer using KAT inhibitors to mimic lethal knockouts. Biochem Soc Trans. 44:979–986. 2016. View Article : Google Scholar : | |
Ashraf W, Bronner C, Zaayter L, Ahmad T, Richert L, Alhosin M, Ibrahim A, Hamiche A, Mely Y and Mousli M: Interaction of the epigenetic integrator UHRF1 with the MYST domain of TIP60 inside the cell. J Exp Clin Cancer Res. 36:1882017. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZM, Rothbart SB, Allison DF, Cai Q, Harrison JS, Li L, Wang Y, Strahl BD, Wang G and Song J: An allosteric interaction links USP7 to deubiquitination and chromatin targeting of UHRF1. Cell Re. 12:1400–1406. 2015. View Article : Google Scholar | |
Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, Li Z and Xu Y: Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 6:70232015. View Article : Google Scholar : PubMed/NCBI | |
Clamme JP, Azoulay J and Mély Y: Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J. 84:1960–1968. 2003. View Article : Google Scholar | |
El Meshri SE, Dujardin D, Godet J, Richert L, Boudier C, Darlix JL, Didier P, Mély Y and de Rocquigny H: Role of the nucleocapsid domain in HIV-1 Gag oligomerization and trafficking to the plasma membrane: A fluorescence lifetime imaging microscopy investigation. J Mol Biol. 427:1480–1494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M and Murty VV: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: Potential role in progression. Genes Chromosomes Cancer. 47:755–765. 2008. View Article : Google Scholar | |
Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI | |
Becker W: Advanced time-correlated single photon counting applications. Springer; Heidelberg: 2015, View Article : Google Scholar | |
Voss TC, Demarco IA and Day RN: Quantitaive imaging of protein interactions in the cell nucleus. Biotechniques. 38:413–424. 2005. View Article : Google Scholar : | |
Ma H, Chen H, Guo X, Wang Z, Sowa ME, Zheng L, Hu S, Zeng P, Guo R, Diao J, et al: M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA. 109:4828–4833. 2012. View Article : Google Scholar : | |
Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C and Fuhrmann G: Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol. 79:1251–1260. 2010. View Article : Google Scholar | |
Achour M, Mousli M, Alhosin M, Ibrahim A, Peluso J, Muller CD, Schini-Kerth VB, Hamiche A, Dhe-Peganon S and Bronner C: Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun. 430:208–212. 2013. View Article : Google Scholar | |
León-González AJ, Jara-Palacios MJ, Abbas M, Heredia FJ and Schini-Kerth VB: Role of epigenetic regulation on the induction of apoptosis in Jurkat leukemia cells by white grape pomace rich in phenolic compounds. Food Nut. 8:4062–4069. 2017. | |
Sharif T, Alhosin M, Auger C, Minker C, Kim JH, Etienne-Selloum N, Bories P, Gronemeyer H, Lobstein A, Bronner C, et al: Aronia melanocarpa juice induces a redox-sensitive p73-related caspase-3-dependent apoptosis in human leukemia cells. PLoS One. 7:e325262012. View Article : Google Scholar | |
Kim JK, Estève PO, Jacobsen SE and Pradhan S: UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res. 37:493–505. 2009. View Article : Google Scholar : | |
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, DN M, Rao PPN, Pestell RG and Rao M: Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol. 114:1055582019. View Article : Google Scholar : PubMed/NCBI | |
Boukhari A, Alhosin M, Bronner C, Sagini K, Truchot C, Sick E, Schini-Kerth VB, André P, Mély Y, Mousli M and Gies JP: CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Anticancer Res. 35:149–157. 2015.PubMed/NCBI | |
Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, Siffert JC, Mathieu E, Muller CD and Bronner C: The retinoblastoma gene and its product are targeted by ICBP90: A key mechanism in the G1/S transition during the cell cycle. Oncogene. 24:7337–7345. 2005. View Article : Google Scholar | |
Unoki M, Brunet J and Mousli M: Drug discovery targeting epigenetic codes: The great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol. 78:1279–1288. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Yang YZ, Shi CZ, Zhang P, Moyer MP, Zhang HZ, Zou Y and Qin HL: UHRF1 promotes cell growth and metastasis through repression of p16(ink4a) in colorectal cancer. Ann Surg Oncol. 19:2753–2762. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xue B, Zhao J, Feng P, Xing J, Wu H and Li Y: Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther. 12:549–559. 2019. View Article : Google Scholar : | |
Subbaiah VK, Zhang Y, Rajagopalan D, Abdullah AN, Yeo-Teh NS, Tomaić V, Banks L, Myers MP, Chow EK and Jha S: E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to destabilize tumor suppressor TIP60. Oncogene. 35:2062–2074. 2016. View Article : Google Scholar | |
Rajagopalan D, Pandey AK, Xiuzhen MC, Lee KK, Hora S, Zhang Y, Chua BH, Kwok HS, Bhatia SS, Deng LW, et al: TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathog. 13:e10066812017. View Article : Google Scholar : PubMed/NCBI | |
Achour M, Jacq X, Rondé P, Alhosin M, Charlot C, Chataigneau T, Jeanblanc M, Macaluso M, Giordano A, Hughes AD, et al: The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene. 27:2187–2197. 2008. View Article : Google Scholar | |
Gao Y, Wang Y, Zhou C, Kong S, Lu J, Wang H and Yang J: Ubiquitin-specific protease 7 (USP7) is essential for endometrial stromal cell decidualization in mice. Dev Growth Differ. 61:176–185. 2019. View Article : Google Scholar | |
Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI | |
Felle M, Joppien S, Németh A, Diermeier S, Thalhammer V, Dobner T, Kremmer E, Kappler R and Längst G: The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39:8355–8365. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mistry H, Gibson L, Yun JW, Sarras H, Tamblyn L and McPherson JP: Interplay between Np95 and Eme1 in the DNA damage response. Biochem Biophys Res Commun. 375:321–325. 2008. View Article : Google Scholar | |
Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, Wei W and Shi Y: DNA damage regulates UHRF1 stability via the SCF(β-TrCP) E3 ligase. Mol Cell Biol. 33:1139–1148. 2013. View Article : Google Scholar : PubMed/NCBI | |
He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE and Wani AA: Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem. 289:27278–27289. 2014. View Article : Google Scholar : | |
He M, Zhu Z, Shah AA, Zou H, Tao J, Chen Q and Wan Y: The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6:622016. View Article : Google Scholar : | |
Kwon SK, Saindane M and Baek KH: p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer. 1868:404–411. 2017. View Article : Google Scholar | |
Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH and Frappier L: Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 13:285–291. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hou H, Sun D and Zhang X: The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 19:2162019. View Article : Google Scholar : | |
Nininahazwe L, Liu B, He C, Zhang H and Chen ZS: The emerging nature of ubiquitin-specific protease 7 (USP7): A new target in cancer therapy. Drug Discov Today. 26:490–502. 2021. View Article : Google Scholar | |
Bronner C: Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code. Sci Sign. 4:pe32011. | |
Jang SY, Hong D, Jeong SY and Kim JH: Shikonin causes apoptosis by up-regulating p73 and down-regulating ICBP90 in human cancer cells. Biochem Biophys Res Commun. 465:71–76. 2015. View Article : Google Scholar : PubMed/NCBI |