Riluzole: A neuroprotective drug with potential as a novel anti‑cancer agent (Review)
- Authors:
- Angelina Blyufer
- Sonam Lhamo
- Cassey Tam
- Iffat Tariq
- Thongthai Thavornwatanayong
- Shahana S. Mahajan
-
Affiliations: Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA, PhD Program in Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA - Published online on: October 27, 2021 https://doi.org/10.3892/ijo.2021.5275
- Article Number: 95
-
Copyright: © Blyufer et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Doble A: The pharmacology and mechanism of action of riluzole. Neurology. 47(6 Suppl 4): S233–S241. 1996. View Article : Google Scholar : PubMed/NCBI | |
Urbani A and Belluzzi O: Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci. 12:3567–3574. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zona C, Siniscalchi A, Mercuri NB and Bernardi G: Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience. 85:931–938. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cheah BC, Vucic S, Krishnan AV and Kiernan MC: Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem. 17:1942–1999. 2010. View Article : Google Scholar : PubMed/NCBI | |
Willard SS and Koochekpour S: Glutamate signaling in benign and malignant disorders: Current status, future perspectives, and therapeutic implications. Int J Biol Sci. 9:728–742. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu LJ, Wall BA, Wangari-Talbot J and Chen S: Metabotropic glutamate receptors in cancer. Neuropharmacology. 115:193–202. 2017. View Article : Google Scholar | |
Khan AJ, LaCava S, Mehta M, Schiff D, Thandoni A, Jhawar S, Danish S, Haffty BG and Chen S: The glutamate release inhibitor riluzole increases DNA damage and enhances cytotoxicity in human glioma cells, in vitro and in vivo. Oncotarget. 10:2824–2834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dolfi SC, Medina DJ, Kareddula A, Paratala B, Rose A, Dhami J, Chen S, Ganesan S, Mackay G, Vazquez A and Hirshfield KM: Riluzole exerts distinct antitumor effects from a metabotropic glutamate receptor 1-specific inhibitor on breast cancer cells. Oncotarget. 8:44639–44653. 2017. View Article : Google Scholar : PubMed/NCBI | |
Prickett TD and Samuels Y: Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res. 18:4240–4246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Skerry TM and Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 22:174–181. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y and Yoneda Y: Glutamate signaling in peripheral tissues. Eur J Biochem. 271:1–13. 2004. View Article : Google Scholar | |
Cowan RW, Seidlitz EP and Singh G: Glutamate signaling in healthy and diseased bone. Front Endocrinol (Lausanne). 3:892012. View Article : Google Scholar | |
Hollmann M and Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci. 17:31–108. 1994. View Article : Google Scholar : PubMed/NCBI | |
Reiner A and Levitz J: Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron. 98:1080–1098. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q and Jin H: SLC7A11/xCT in cancer: Biological functions and therapeutic implications. Am J Cancer Res. 10:3106–3126. 2020.PubMed/NCBI | |
Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA and Vander Heiden MG: Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife. 6. pp. e277132017, View Article : Google Scholar | |
Sharma MK, Seidlitz EP and Singh G: Cancer cells release glutamate via the cystine/glutamate antiporter. Biochem Biophys Res Commun. 391:91–95. 2010. View Article : Google Scholar | |
Ye ZC, Rothstein JD and Sontheimer H: Compromised glutamate transport in human glioma cells: Reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci. 19:10767–10777. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ye ZC and Sontheimer H: Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59:4383–4391. 1999.PubMed/NCBI | |
Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M and Eyüpoglu IY: Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med. 14:629–632. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shin SS, Jeong BS, Wall BA, Li J, Shan NL, Wen Y, Goydos JS and Chen S: Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis. 7:862018. View Article : Google Scholar : PubMed/NCBI | |
Wangpaichitr M, Wu C, Li YY, Nguyen DJM, Kandemir H, Shah S, Chen S, Feun LG, Prince JS, Kuo MT and Savaraj N: Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer. Oncotarget. 8:49275–49292. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martin GS: Cell signaling and cancer. Cancer Cell. 4:167–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hemmings BA and Restuccia DF: PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 4:a0111892012. View Article : Google Scholar : PubMed/NCBI | |
Nicholson KM and Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14:381–395. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schmelzle T and Hall MN: TOR, a central controller of cell growth. Cell. 103:253–262. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in the cancer genome atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS and Chen S: Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res. 67:2298–2305. 2007. View Article : Google Scholar : PubMed/NCBI | |
Choi KY, Chang K, Pickel JM, Badger JD II and Roche KW: Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci USA. 108:15219–15224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Prickett TD, Wei X, Cardenas-Navia I, Teer JK, Lin JC, Walia V, Gartner J, Jiang J, Cherukuri PF, Molinolo A, et al: Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet. 43:1119–1126. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yip D, Le MN, Chan JL, Lee JH, Mehnert JA, Yudd A, Kempf J, Shih WJ, Chen S and Goydos JS: A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin Cancer Res. 15:3896–3902. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Niglio SA, Salehomoum N, Chan JL, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS and Goydos JS: Targeting glutamatergic signaling and the PI3 kinase pathway to halt melanoma progression. Transl Oncol. 8:1–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sperling S, Aung T, Martin S, Rohde V and Ninkovic M: Riluzole: A potential therapeutic intervention in human brain tumor stem-like cells. Oncotarget. 8:96697–96709. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rajendran G, Shanmuganandam K, Bendre A, Muzumdar D, Goel A and Shiras A: Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol. 104:483–494. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy U, et al: Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole. PLoS One. 12:e01712562017. View Article : Google Scholar : PubMed/NCBI | |
Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kageshita T, Hamby CV, Ishihara T, Matsumoto K, Saida T and Ono T: Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol. 145:210–216. 2001. View Article : Google Scholar : PubMed/NCBI | |
Biechele TL, Camp ND, Fass DM, Kulikauskas RM, Robin NC, White BD, Taraska CM, Moore EC, Muster J, Karmacharya R, et al: Chemical-genetic screen identifies riluzole as an enhancer of Wnt/β-catenin signaling in melanoma. Chem Biol. 17:1177–1182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duchen MR: Mitochondria and calcium: From cell signalling to cell death. J Physiol. 529(Pt 1): 57–68. 2000. View Article : Google Scholar : PubMed/NCBI | |
Beltran-Parrazal L and Charles A: Riluzole inhibits spontaneous Ca2+ signaling in neuroendocrine cells by activation of K+ channels and inhibition of Na+ channels. Br J Pharmacol. 140:881–888. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hemendinger RA, Armstrong EJ III, Radio N and Brooks BR: Neurotoxic injury pathways in differentiated mouse motor neuron-neuroblastoma hybrid (NSC-34D) cells in vitro-limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity. Toxicol Appl Pharmacol. 258:208–215. 2012. View Article : Google Scholar | |
Kamal T, Green TN, Morel-Kopp MC, Ward CM, McGregor AL, McGlashan SR, Bohlander SK, Browett PJ, Teague L, During MJ, et al: Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation. Cell Signal. 27:1860–1872. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jan CR, Lu YC, Jiann BP, Chang HT and Huang JK: Effect of riluzole on cytosolic Ca2+ increase in human osteosarcoma cells. Pharmacology. 66:120–127. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wadosky KM, Shourideh M, Goodrich DW and Koochekpour S: Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate. 79:140–150. 2019. View Article : Google Scholar | |
Liou GY and Storz P: Reactive oxygen species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pelicano H, Carney D and Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chakravarthi S, Jessop CE and Bulleid NJ: The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 7:271–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Janáky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y and Shaw CA: Glutathione and signal transduction in the mammalian CNS. J Neurochem. 73:889–902. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cao SS and Kaufman RJ: Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 21:396–413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kennedy L, Sandhu JK, Harper ME and Cuperlovic-Culf M: Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10:14292020. View Article : Google Scholar : | |
Seol HS, Lee SE, Song JS, Lee HY, Park S, Kim I, Singh SR, Chang S and Jang SJ: Glutamate release inhibitor, Riluzole, inhibited proliferation of human hepatocellular carcinoma cells by elevated ROS production. Cancer Lett. 382:157–165. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wall BA, Wangari-Talbot J, Shin SS, Schiff D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS and Chen S: Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells. Pigment Cell Melanoma Res. 27:263–274. 2014. View Article : Google Scholar : | |
Cerchio R Jr, Marinaro C, Foo TK, Xia B and Chen S: Nonhomologous end-joining repair is likely involved in the repair of double-stranded DNA breaks induced by riluzole in melanoma cells. Melanoma Res. 30:303–308. 2020. View Article : Google Scholar | |
Raghubir M, Azeem SM, Hasnat R, Rahman CN, Wong L, Yan S, Huang YQ, Zhagui R, Blyufer A, Tariq I, et al: Riluzole-induced apoptosis in osteosarcoma is mediated through Yes-associated protein upon phosphorylation by c-Abl Kinase. Sci Rep. 11:209742021. View Article : Google Scholar : PubMed/NCBI | |
Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A and Gera J: Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem. 283:23274–23287. 2008. View Article : Google Scholar : PubMed/NCBI | |
Benavides-Serrato A, Saunders JT, Holmes B, Nishimura RN, Lichtenstein A and Gera J: Repurposing potential of Riluzole as an ITAF Inhibitor in mTOR therapy resistant glioblastoma. Int J Mol Sci. 21:3442020. View Article : Google Scholar : | |
Basu AK: DNA Damage, mutagenesis and cancer. Int J Mol Sci. 19:9702018. View Article : Google Scholar : | |
O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI | |
Mehnert JM, Silk AW, Lee JH, Dudek L, Jeong BS, Li J, Schenkel JM, Sadimin E, Kane M, Lin H, et al: A phase II trial of riluzole, an antagonist of metabotropic glutamate receptor 1 (GRM1) signaling, in patients with advanced melanoma. Pigment Cell Melanoma Res. 31:534–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wall BA, Yu LJ, Khan A, Haffty B, Goydos JS and Chen S: Riluzole is a radio-sensitizing agent in an in vivo model of brain metastasis derived from GRM1 expressing human melanoma cells. Pigment Cell Melanoma Res. 28:105–109. 2015. View Article : Google Scholar | |
Lemieszek M, Stepulak A, Sawa-Wejksza K, Czerwonka A, Ikonomidou C and Rzeski W: Riluzole inhibits proliferation, migration and cell cycle progression and induces apoptosis in tumor cells of various origins. Anticancer Agents Med Chem. 18:565–572. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wu C, Ming J, Nie X, Guo E, Zhang W and Hu G: Riluzole enhances the response of human nasopharyngeal carcinoma cells to ionizing radiation via ATM/P53 signalling pathway. J Cancer. 11:3089–3098. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yun CW and Lee SH: The roles of autophagy in cancer. Int J Mol Sci. 19:34662018. View Article : Google Scholar : | |
Linder B and Kögel D: Autophagy in cancer cell death. Biology (Basel). 8:822019. | |
Sun R, He X, Jiang X and Tao H: The new role of riluzole in the treatment of pancreatic cancer through the apoptosis and autophagy pathways. J Cell Biochem. Nov 11–2019.Epub ahead of print. | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Le MN, Chan JL, Rosenberg SA, Nabatian AS, Merrigan KT, Cohen-Solal KA and Goydos JS: The glutamate release inhibitor Riluzole decreases migration, invasion, and proliferation of melanoma cells. J Invest Dermatol. 130:2240–2249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Khan AJ, Wall B, Ahlawat S, Green C, Schiff D, Mehnert JM, Goydos JS, Chen S and Haffty BG: Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in vitro and in vivo. Clin Cancer Res. 17:1807–1814. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akamatsu K, Shibata MA, Ito Y, Sohma Y, Azuma H and Otsuki Y: Riluzole induces apoptotic cell death in human prostate cancer cells via endoplasmic reticulum stress. Anticancer Res. 29:2195–2204. 2009.PubMed/NCBI | |
Raghubir M, Rahman CN, Fang J, Matsui H and Mahajan SS: Osteosarcoma growth suppression by riluzole delivery via iron oxide nanocage in nude mice. Oncol Rep. 43:169–176. 2020. | |
Rampersaud S, Fang J, Wei Z, Fabijanic K, Silver S, Jaikaran T, Ruiz Y, Houssou M, Yin Z, Zheng S, et al: The effect of cage shape on nanoparticle-based drug carriers: Anticancer drug release and efficacy via receptor blockade using dextran-coated iron oxide nanocages. Nano Lett. 16:7357–7363. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B and Yeger H: Combination therapy in combating cancer. Oncotarget. 8:38022–38043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pucci C, Martinelli C and Ciofani G: Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience. 13:9612019. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Salomone S and Libra M: Evolution of cancer pharmacological treatments at the turn of the Third Millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI | |
Fortunato A: The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells. Cell Oncol (Dordr). 40:367–378. 2017. View Article : Google Scholar | |
Lee HJ, Wall BA, Wangari-Talbot J, Shin SS, Rosenberg S, Chan JL, Namkoong J, Goydos JS and Chen S: Glutamatergic pathway targeting in melanoma: single-agent and combinatorial therapies. Clin Cancer Res. 17:7080–7092. 2011. View Article : Google Scholar : PubMed/NCBI | |
Speyer CL, Bukhsh MA, Jafry WS, Sexton RE, Bandyopadhyay S and Gorski DH: Riluzole synergizes with paclitaxel to inhibit cell growth and induce apoptosis in triple-negative breast cancer. Breast Cancer Res Treat. 166:407–419. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lacomblez L, Bensimon G, Leigh PN, Guillet P and Meininger V: Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet. 347:1425–1431. 1996. View Article : Google Scholar : PubMed/NCBI | |
Groeneveld GJ, Van Kan HJ, Kalmijn S, Veldink JH, Guchelaar HJ, Wokke JH and Van den Berg LH: Riluzole serum concentrations in patients with ALS: Associations with side effects and symptoms. Neurology. 61:1141–1143. 2003. View Article : Google Scholar : PubMed/NCBI | |
Groeneveld GJ, van Kan HJ, Lie-A-Huen L, Guchelaar HJ and van den Berg LH: An association study of riluzole serum concentration and survival and disease progression in patients with ALS. Clin Pharmacol Ther. 83:718–722. 2008. View Article : Google Scholar | |
Le Liboux A, Cachia JP, Kirkesseli S, Gautier JY, Guimart C, Montay G, Peeters PA, Groen E, Jonkman JH and Wemer J: A comparison of the pharmacokinetics and tolerability of riluzole after repeat dose administration in healthy elderly and young volunteers. J Clin Pharmacol. 39:480–486. 1999.PubMed/NCBI | |
Bellingham MC: A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: What have we learned in the last decade? CNS Neurosci Ther. 17:4–31. 2011. View Article : Google Scholar | |
Wokke J: Riluzole. Lancet. 348:795–799. 1996. View Article : Google Scholar : PubMed/NCBI | |
Miller RG, Mitchell JD, Lyon M and Moore DH: Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord. 4:191–206. 2003. View Article : Google Scholar : PubMed/NCBI | |
Grant P, Song JY and Swedo SE: Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 20:309–315. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sorenson EJ: An acute, life-threatening, hypersensitivity reaction to riluzole. Neurology. 67:2260–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Inoue-Shibui A, Kato M, Suzuki N, Kobayashi J, Takai Y, Izumi R, Kawauchi Y, Kuroda H, Warita H and Aoki M: Interstitial pneumonia and other adverse events in riluzole-administered amyotrophic lateral sclerosis patients: A retrospective observational study. BMC Neurol. 19:722019. View Article : Google Scholar : PubMed/NCBI | |
Lacomblez L, Bensimon G, Leigh PN, Debove C, Bejuit R and Truffinet P: Long-term safety of riluzole in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 3:23–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
Speyer CL, Nassar MA, Hachem AH, Bukhsh MA, Jafry WS, Khansa RM and Gorski DH: Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1. Breast Cancer Res Treat. 157:217–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Poupon L, Lamoine S, Pereira V, Barriere DA, Lolignier S, Giraudet F, Aissouni Y, Meleine M, Prival L, Richard D, et al: Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology. 140:43–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamada T, Tsuji S, Nakamura S, Egashira Y, Shimazawa M, Nakayama N, Yano H, Iwama T and Hara H: Riluzole enhances the antitumor effects of temozolomide via suppression of MGMT expression in glioblastoma. J Neurosurg. 134:701–710. 2020. View Article : Google Scholar : PubMed/NCBI |